
AI Law: Lecture 1 Notes
Peter Henderson

Fall 2025

Perhaps surprisingly to some, the outcome of much litigation turns
on the fundamental technical details of foundation models. What
are they trained on? Why are they trained on those things? Do the
memorize or actually learn general patterns? To understand the tech-
nical jargon and analyses, we will open with a very rough overview
of foundation models, enought to fit in one lecture.

1 A Thousand Foot View of LLMs

The fundamental goal of most LLM model creators, especially as
we integrate additional modalities beyond text-based language into
them, is to have general purpose systems that can quickly learn to
do any task. The Stanford cohort of folks, like myself, sometimes call
these models foundation models, instead of LLMs, to capture their mul-
tipurpose basis. These models take a massive amount of data, “train”
on them to learn underlying statistical patterns, then are adapted to a
bunch of different downstream tasks that meet the users’ needs.

Figure 1: Foundation Models, taken
from Bommasani et al. (2021).

Currently, we mainly focus on a constrained goal for LLMs, basic
chat assistants. So if you’re a lawyer, you might want to engage in a
conversation like the following:

User: Write me a legal memo about the current state of fair use doc-

ai law: lecture 1 notes peter henderson 2

trine after Warhol? Cite the most relevant cases.
AI Assistant: Sure, I can help with that.
To: [Recipient Name]
From: [Your Name]
Date: June 1, 2024

Subject: Current State of Fair Use Doctrine Post-Warhol Decision
Introduction
This memorandum provides an analysis of the fair use doctrine follow-
ing the Supreme Court’s decision in Andy Warhol Foundation for the
Visual Arts, Inc. v. Goldsmith, 598 U.S. ___ (2023). This landmark case
has significant implications for the application of fair use in the context
of transformative works. . . .

To get there, the LLM approach is to focus on modeling the dis-
tributions of next tokens.1 If you get really really good at modeling 1 For now, just think of a token as a

word, we’ll learn more about this soon.what words could come next given a series of previous words, we
(perhaps surprisingly) find that this is enough to learn to solve many
many different types of tasks, as well as learning higher-level reason-
ing mechanisms. To see what I mean by modeling next token distri-
butions, consider that you’re given a sentence, “In Brown v. Board of
Education, the Supreme Court ruled that ____” Now, imagine what
you would fill in for the next word. It could be many different things:

• In Brown v. Board of Education, the Supreme Court ruled that the

• In Brown v. Board of Education, the Supreme Court ruled that
schools

• In Brown v. Board of Education, the Supreme Court ruled that segre-
gation

• In Brown v. Board of Education, the Supreme Court ruled that char-
ter

When we train a model on tons and tons of data, the model can
also narrow down the potential words that might come next with suf-
ficiently accurate probabilities. Then we can actually have it complete
the sentence accurately (with sufficiently large models and data).

In this case, GPT-2 (which can now run on many consumer lap-
tops), outputs the token distribution seen in Figure 1.

To complete the text, we can then sample from the next token
distribution—we choose randomly according to the probabilities
that each token is assigned. Or we can choose the most probable
token—greedy selection. Let’s say that we selected “charter” based
on random sampling. Remember that random sampling means that
any token can be chosen as long as it has non-zero probability. This
will be important to remember when we discuss model errors in the
future.

ai law: lecture 1 notes peter henderson 3

Figure 2: Next token distribution for
GPT-2

Figure 3: Update next token.

What do we do next? We feed in the original text snippet, plus
the selected token back into the model. Then the model gets the next
token distribution after that, again and again and again. We do this
until the model suggests a special token called a “stop token” or
an “end of sequence token” which says that the model should stop
generating (or, alternatively, if we’ve run out of compute). Notice,
though, unlike in the first iteration, after we feed in the selected
token (in this case, the word “charter” we have only two real choices:
“school” or “schools.” As seen in Figure 6, almost all tokens have
close to zero probability mass.2 The model has learned sufficiently 2 In jargon, a probability mass is just the

amount of probability on a given token.from its training data that “Brown v. Board of Education probably
wasn’t a ruling about “charter... planes?”

Now, this is all more easily said than done. To understand how we
get from nothing to a model that can answer user requests, there are
many different components—and interesting twists and turns. I’ll try

ai law: lecture 1 notes peter henderson 4

to give enough of an overview so that you can understand not just
how they work, but begin to have a better intuition of how and why
things can go wrong. In particular, we’ll focus on these main aspects
of LLMs:

1. Tokenization

2. Embeddings

3. The Transformer Architecture

4. Pretraining

5. Finetuning

6. Alignment

7. Evaluation

8. Red Teaming, Harms, and Failure Modes

2 Tokenization

Let’s start with tokenization. As noted above, a token is (for better or
for worse), not a word. Nor is it a character, a punctuation, or any-
thing else. It is a statistically-derived unit of text (or other modality
like audio or images). To build some intuition, we can go to the Tik-
tokenizer website, which is a convenient tool for building intuition
about tokenizers of different models. If we take our previous text,
we’ll get something like this:

Figure 4: TikTokenizer screenshot.

https://tiktokenizer.vercel.app/?model=gpt2
https://tiktokenizer.vercel.app/?model=gpt2

ai law: lecture 1 notes peter henderson 5

So we end up with 13 tokens. Mostly, we lucked out and we get
whole words (with a few smaller character and punctuation tokens
mixed in).

[818]︸ ︷︷ ︸
In

[4373]︸ ︷︷ ︸
Brown

[410]︸ ︷︷ ︸
v

[13]︸︷︷︸
.

[5926]︸ ︷︷ ︸
Board

[286]︸ ︷︷ ︸
of

[7868]︸ ︷︷ ︸
Education

[11]︸︷︷︸
,

[262]︸ ︷︷ ︸
the

[5617]︸ ︷︷ ︸
Supreme

[3078]︸ ︷︷ ︸
Court

[8879]︸ ︷︷ ︸
ruled

[326]︸ ︷︷ ︸
that

What do these numbers mean? We have a “dictionary" where we
can use the token “ID” (index) to look up a mathematical represen-
tation of that token—something that we’ll get to in the Embeddings
Section (§ 3). For now, just think of it as the page number for where
you can look up more information about a token. Similarly, like the
index of a book, you can take a token’s text and find its token ID.

Sometimes we won’t be so lucky. Gideon v. Wainwright, 372 U.S.
335 (1963)—while having far fewer words, gets mapped to about the
same amount of tokens as Brown v. Board of Education of Topeka, 347

U.S. 483 (1954).

Figure 5: TikTonizer screenshot.

[38]︸︷︷︸
G

[617]︸ ︷︷ ︸
ide

[263]︸ ︷︷ ︸
on

[323]︸ ︷︷ ︸
v

[13]︸︷︷︸
.

[486]︸ ︷︷ ︸
W

[524]︸ ︷︷ ︸
ain

[83439]︸ ︷︷ ︸
wright

[11]︸︷︷︸
,

[220]︸ ︷︷ ︸
372

[34036]︸ ︷︷ ︸
U

[601]︸ ︷︷ ︸
.

[1242]︸ ︷︷ ︸
S

[13]︸︷︷︸
.

[220]︸ ︷︷ ︸
335

[29587]︸ ︷︷ ︸
(

[350]︸ ︷︷ ︸
196

[6514]︸ ︷︷ ︸
3

[18]︸︷︷︸
)

You’ll notice, nothing about the tokenization of Gideon seems log-
ical. The words are broken up in odd ways. 1963 turns into 196 and
3.

ai law: lecture 1 notes peter henderson 6

Why does this happen? Because a tokenizer is also trained—it is
learned from statistical patterns in a large dataset. Mostly, this is
with some variation of the Byte-Pair Encoding (BPE) algorithm (or
something like it). You don’t need to know the exact details of it, but
you can think about it at a high level as follows.

First, you start off with just the base-level tokens (characters or
“bytes” of information). So if you were training on the United States
constitution, you’d first tokenize something like this:

Figure 6: A character-level tokenization
of the first part of the constitution. The
first step of BPE.

Then, we find all the pairs of tokens that we have so far that are
most statistically likely to go together. In this case, we see an awful
lot of t’s going together with h’s.

Figure 7: The t’s and h’s get clustered
together next.

After that the e’s mostly go with th’s so we get our first full word
token.

And this continues on and on until you fill up whatever vocabu-
lary size that you’ve allocated. Your vocabulary size is the amount
of tokens you’re willing to have. GPT3 and 4 have roughly ∼100k
tokens, GPT-4(o) has around 200k.

Well, you might ask, why can’t I just encode everything as char-
acters/bytes and call it a day? Well researchers have dreamed of this
for years (Xue et al., 2022), but it’s too expensive. Remember that
LLMs work by predicting next tokens. The cost scales linearly with

ai law: lecture 1 notes peter henderson 7

Figure 8: Our first full word token.

the amount of tokens you have to generate to respond to a user. So,
the larger your vocab size, the fewer tokens you’ll have to generate.
This goes for multiple languages as well. A selling point of Ope-
nAI’s GPT-4(o) release was that it required fewer tokens for other
languages. For most models, there’s a non-English “tax.” It costs
more to use other languages (per token) because they simply require
more tokens. Our sentence, “In Brown v. Board of Education, the
Supreme Court ruled that” is 13 tokens in English ($0.00013 for gpt-
4-1106-preview in June 2024). Translated into Chinese, it costs almost
dobule at 24 tokens ($0.00024). And translated into Ukrainian, we get
more than 3x the cost at 42 tokens ($0.00042). Languages with fewer
speakers tend to be less represented in the data and end up costing
more due to this phenomenon.

This results in other effects too. Recently, researchers have found
what are referred to as “glitch tokens.” They are tokens that are
counter-intuitive as to why they might be so statistically likely as to
get their own token.

Consider these three real tokens in the GPT-2 tokenizer: “TheNi-
tromeFan” (token 42090), “RandomRedditorWithNo” (tokeni 36174),
and SolidGoldMagikarp (43453). Why are these even in the tok-
enizer? It turns out that there is a SubReddit called “r/counting”,
where users collaboratively (or competitively?) count to infinite.
Every day, they respond to one another, incrementing the previous
post’s number by one.

These three tokens (“TheNitromeFan”, “RandomRedditorWithNo”,
and “SolidGoldMagikarp”) are actually just usernames from this sub-
reddit. They posted, according to a recent counting (pun intended),
84581, 63434, and 65753 times to the counting forum, respectively.
When OpenAI then scraped the web for data, these tens of thousands
of posts made their way into the dataset. Then when the tokenizer
was trained, each of these users got their own token.

Similarly, researchers have dug into the origins of a large num-
ber of these strange tokens. externalActionCode (token 31576), for

https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc/solidgoldmagikarp-iii-glitch-token-archaeology

ai law: lecture 1 notes peter henderson 8

Figure 9: r/counting thread

Figure 10: The /r/counting leaders.

ai law: lecture 1 notes peter henderson 9

example, appears on every congressional bill tracker that’s reposted
across the web. Digging into the vocabularies of models also tells you
how much (or how little) data cleaning took place when the tokenizer
was trained. Recently researchers were shocked to find long strings
of spammy and adult content in the Chinese tokens of GPT-4(o)’s
tokenizer (along with “Socialism with Chinese characteristics”).

Figure 11: Chinese spammy tokens in
GPT-4(o)

These glitch tokens can result in undefined behaviors (something
that we’ll explain more in the embeddings section). One key way
things can go wrong is if you train the tokenizer on different data
than you train the model itself. Essentially, the model never learns
what the token really means (or at least what’s statistically most
likely to come after that token). So researchers have found that mod-
els “glitch” out when asked to repeat these tokens, either replacing
the word(s) that should have been there with something random, or
just failing to generate anything. This leads to a potential security
problem since it gives an attack vector for people to trick a model
into entering unusual behavior modes.

Finally, I won’t get into it too much, but LLMs are being trained on
all kinds of data using the same model all at once, not just text. But
how would you even tokenize an image? Or audio? Well, you can
take the image, split it into “patches” of pixels and then feed each of
those patches into the model as a “token”. Similarly, for audio, you
can turn the audio into a spectrogram and then turn that into patches
as well.

ai law: lecture 1 notes peter henderson 10

Figure 12: Glitch token effects

ai law: lecture 1 notes peter henderson 11

Figure 13: Image patches.

Figure 14: Audio Patches

ai law: lecture 1 notes peter henderson 12

3 Embeddings

Once we have a tokenizer and can split the text/images/audio into
many tokens, we now need to convert these into mathematical repre-
sentations that can be processed by a neural network. We call these
“embeddings.” Embeddings are a vector of numbers. So when we
take the token ID, we can index into a matrix (like visualized below)
and find the column of numbers that represent the token.

Figure 15: An Embedding Matrix.
Columns are the token index, rows
are a single dimension in a many-
dimensional embedding vector.

So if we start looking up the embeddings for the first part of the
Constitution, we’ll get:

Figure 16: A sentence with its represen-
tative embeddings.

Now, before the embeddings are “trained”, they’re just random
numbers—meaningless—but over the lifetime of training, they will
start to have meaningful representations that map to semantic space.
So you can actually turn the analogy “man is to woman as king is to
queen” into math in vector space:

⃗king − m⃗an + ⃗woman ≈ ⃗queen (1)

The idea is that the relationship between “man” and “woman” is
similar to the relationship between “king” and “queen”. By adding
the vector that represents the transition from “man” to “woman”

ai law: lecture 1 notes peter henderson 13

to the vector for “king,” you should end up close to the vector for
“queen” in the semantic space.

Figure 17: Embeddings famously have
important relationships in vector space
that relate to semantic meaning. While
trained tokens might have meaningful
mappings from embedding space
to semantic space, “glitch tokens”
probably do not. Modified from: this
image.

However, as I mentioned, these vectors must be trained! If you
never see any training data for the token, the embedding stays close
to its random representation. This is why glitch tokens might lead to
strange behaviors, these embeddings aren’t trained, so the model is
getting a semi-randomized input that it doesn’t know how to map to
any actual semantic meaning.

For audio and video, recall that tokens are just patches of images
or audio representations. Remember that a pixel in an image is as-
sociate with a set of numbers indicating what color the pixel should
be. As a result, you can just flatten these values out into a vector rep-
resentation and use the pixel values directly. Some models will do
something a bit more complicated, using an intermediate model to
get a better representation of the image patches. But we don’t need to
get into that here.

Once you can convert all your different types of tokens into em-
beddings, you can begin to weave them together into one unified
multimodal model. Below are real patches from a blue whale call
spectrogram and the associated text. Think about how the web is? If
I just scraped the web, I would often get sequences of images that are
associated with semantic meaning. So in a fairly unspervised way I
would be able to start associated words with images—thanks to how
we’ve naturally built webpages.

Figure 18: Weaving together different
modalities in embedding space.

https://commons.wikimedia.org/wiki/File:Word_vector_illustration.jpg
https://commons.wikimedia.org/wiki/File:Word_vector_illustration.jpg

ai law: lecture 1 notes peter henderson 14

Positional Encodings. There’s one last step though. If you’re a model
and you just get this sequence of vectors, there’s actually no infor-
mation that tells you how each vector corresponds to a position in
a sequence. The vectors themselves are all a model sees—it doesn’t
have a natural notion of position in the sequence. It might be able
to learn a natural encoding of positionality over time (in fact, recent
work suggests this might be a better approach), but this can be ex-
pensive and unpredictable. Instead, model creators use a shortcut by
providing some information in the embedding about where in the
sequence of text a token is. They do so via positional encoding.

Apologies for the math, but one way to encode the position is via
a sinusoidal function. The positional encoding for position pos and
dimension i is defined as:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where dmodel is the dimensionality of the embeddings. The positional
encodings are then added to the input embeddings:

z = e + p

where e is the input embedding and p is the positional encoding.
This can be visualized as:

Figure 19: The positional encodings get
added to the embeddings.

The positional encodings allow the model to distinguish between
different positions in the sequence, even though the input embed-
dings themselves contain no positional information.

4 The Transformer Architecture

The transformer architecture is the backbone of modern large lan-
guage models. It’s a type of neural network architecture that was
introduced in the 2017 paper “Attention Is All You Need" by Vaswani
et al. The key component of a transformer is the self-attention mech-
anism, which allows the model to weigh the importance of different
parts of the input when making predictions. Effectivelly all of this is

ai law: lecture 1 notes peter henderson 15

just matrix multiplication. A bunch of multiplications and additions
for billions of numbers. Before we continue, a few definitions:

Definitions. An architecture refers to the overall structure
and components of the model. It defines what types of matrix
multiplications must be done, how many there are, how they
are connected, and the flow of data between matrices.
The weights or parameters of the model are all of the learned
numbers that make up the matrices that an architecture
requires—the numbers that the model tunes during training to
make its predictions match the training data.

At its core, a transformer model is a series of matrix multiplica-
tions. Recall that when you have two matrices, a matrix multiplica-
tion just looks like the following.

Recall Matrix Multiplications.
Let’s consider two matrices A and B, where A is a 2x3 matrix
and B is a 3x2 matrix.

A =

(
1 2 3
4 5 6

)
, B =

 7 8
9 10

11 12


The product of these matrices, denoted as C = AB, will be a
2x2 matrix. The elements of C are computed as follows:

C = AB =

(
c11 c12

c21 c22

)

where:
c11 = a11b11 + a12b21 + a13b31 = (1× 7)+ (2× 9)+ (3× 11) = 58
c12 = a11b12 + a12b22 + a13b32 = (1 × 8) + (2 × 10) + (3 × 12) =
64
c21 = a21b11 + a22b21 + a23b31 = (4 × 7) + (5 × 9) + (6 × 11) =
139
c22 = a21b12 + a22b22 + a23b32 = (4 × 8) + (5 × 10) + (6 × 12) =
154
Therefore, the result of the matrix multiplication is:

C = AB =

(
58 64

139 154

)

So, now that you remember what a matrix multiplication is. Basi-
cally what we want to do is take our series of input embeddings and

ai law: lecture 1 notes peter henderson 16

convert them through a series of matrix multiplications into a prob-
ability distribution of next token predictions. In a transformer, there
are several different types of operations to make this conversion pos-
sible. I won’t get into all of them, but arguably the most important is
the self-attention layer.

For each token, it computes a weighted sum of all tokens in the
input, where the weights are determined by how relevant each token
is to the current token. This allows the model to attend to important
parts of the context.

The equation for the attention mechanism is just:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

This can be a bit intimidating, but the names of the variables actu-
ally help provide some intuition. Imagine if you have a set of values
(V)—a library—that you want to find some information in. You don’t
know which stack the book actually is in that contains your infor-
mation. So you need to find a set of potential keys K (indexes into V
where the information might lie. You do that by asking the library
computer a query Q that maps queries to a probability distribution

over potential matches. In this case, softmax
(

QKT√
dk

)
just creates a

probability distribution over information sources in V that you can
piece together.

Figure 20: An intuitive view of atten-
tion.

Unfortunately, it’s a little bit more complicated than that. Here Q,
K, and V are matrices computed by multiplying the input embed-
dings X by weight matrices WQ, WK, WV :

Q = XWQ, K = XWK, V = XWV

And there’s no actual information fixed in place here, it’s all dy-
namically learned. WK, WV , WQ are all randomly initialized and
learned during training. X consists of either the input embeddings

ai law: lecture 1 notes peter henderson 17

or we can stack multiple blocks together so one output just feeds into
the next block. So X just becomes the output of the previous block.

It can be useful to build some intuition about what happens in
the attention layer. And “interpretability” methods aim to open up
these “black boxes.” One way to do this is to learn a set of sparse
maps that tell you which small number of neurons—when activated
together—result in a desired behavior. This is done via what’s known
as a “sparse autoencoder”. Essentially you’re just learning the min-
imal number of weights that when activated can reconstruct a small
dataset of text.

Figure 21: OpenAI’s figure demonstrat-
ing this technique. See here.

Figure 22: From Anthropic’s Golden-
GateClaude Model see here.

Using this approach, we Anthropic recently showed that it can
find a feature that makes its model obsessed with the Golden Gate
Bridge. These are promising tools to quickly “patch” or “calibrate”
certain behaviors in models.

Most of the time, a transformer also does some additional oper-
ations to the output of the attention block, like passing the output
through a “feed forward neural network” (sometimes also called a
“multilayer perceptron”). This is just a couple of additional matrix
multiplications. Something like:

https://openai.com/index/extracting-concepts-from-gpt-4/
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

ai law: lecture 1 notes peter henderson 18

FFN(x) = max(0, xW1 + b1)W2 + b2

This is a simple two-layer network with a ReLU activation, ReLU(x) =
max(0, x).

The attention and feed-forward layers are combined into a trans-
former block, which can be stacked to form a multi-layer transformer
model:

Figure 23: The decoder-only trans-
former block.

The output of the final decoder block is a vector of raw scores –
these don’t yet represent proper probabilities over the vocabulary. To
convert them to probabilities, we use the softmax function:

P(xi) =
exi

∑j exj

This exponentiates each score and normalizes by the sum, ensuring
the output values form a valid probability distribution. The model’s
predicted probability for each token is then given by the correspond-
ing entry in this softmax output vector.

ai law: lecture 1 notes peter henderson 19

5 Pretraining

With the transformer architecture defined, the next step is to train the
model weights on a large amount of text data. This is called pretrain-
ing. The goal is for the model to learn general language knowledge
and capabilities that can later be adapted to specific tasks. The model
is trained using a causal language modeling loss or objective. This
means predicting the next token given the previous tokens, across a
large text corpus.

Mathematically, the model aims to maximize the likelihood of the
training data:

L(θ) = −∑
i

log P(xi|x<i, θ)

Where θ represents the model parameters (weights), xi is the i-th
token, and x<i are all tokens before it. By maximizing this likelihood,
the model learns to assign high probability to the actual next tokens
that appear in the data.

You don’t really need to know what this means, it’s just the prob-
ability that your model correctly predicted the correct next token
based on some training data. Over time, you use a process called
gradient descent to increase the probability3 that the model correctly 3 The astute reader will notice that tech-

nically you are minimizing the negative
probability, same as maximizing.

predicted the next token. This updates all of the W’s above until they
are increasingly more likely to correctly predict text/images/audio.

You’ll often hear machine learning researchers complain about
“loss curves.” A loss curve is just a plot of the loss values over the
lifetime of training the model. The more data you feed into the
model, the lower the loss should be (you should be getting better
at predicting next tokens).

Figure 24: Typical loss curve during
training. The model gets better at
predicting the data over time.

The amount of training data and compute used substantially im-
pacts model capabilities. There are predictable scaling laws – em-
pirically, model performance improves as a power law with training
data size and model size. Larger models trained on more data gener-
ally perform better. There’s some debate about the exact scaling, and
some have shown that we haven’t even hit limits for how good rela-
tively small models can get. Llama 3, for example, has seven billion
parameters (this is the quantity of numbers represented in all of the

ai law: lecture 1 notes peter henderson 20

model weights).

Figure 25: Scaling laws for language
models. Source: Kaplan et al. (2020)

The quality of the training data is also crucial. Since the model’s
knowledge comes from this data, pretraining on higher quality data
leads to better capabilities. Low quality data, or data with undesir-
able content, can degrade performance. Recently researchers have
found that by deduplication and filtering data for its quality, models
can significantly improve with far less data.

Figure 26: From Penedo et al. (2024)

Another important thing to keep in mind is that sometimes mod-
els will oscillate on what exactly they are learning. They might take a
shortcut and memorize some pattern that doesn’t actually grasp the
logical reasoning behind the pattern.

For example, a model might encode “2+2=4” because it memo-
rized that if you see the sequence “2+2=” you should always output
4. However, this does not mean that the model can now do addition
more generally. It has been shown that models easily break down
when you swap in numbers with more digits like “1251251+1251240=?”
The model typically won’t get it correct. However, with longer train-
ing on more data, some have found a phenomenon called grokking,
where a model transitions from memorizing shortcuts to learning
a more general pattern. Basically, it’s like when a human suddenly
“gets it.” In this case, you see a rapid increase in performance after
an extended period of slow learning. It’s believed to be related to the
model learning more abstract, generalizable features.

ai law: lecture 1 notes peter henderson 21

Figure 27: Illustration of grokking.
Performance rapidly improves after a
period of slow gains. Source: Pearce et
al. (2023)

6 Fine-tuning

A model after pre-training is very good at predicting distributions
of tokens that should come next. But remember that this is mostly
trained on random freeform text, not structured conversations. So
consider if we tell a pretrained model, “You are a helpful, smart,
kind, and efficient AI assistant. You always fulfill the user’s requests
to the best of your ability.”

Then we ask it “Write a legal memo about the current state of fair
use, including any recent supreme court cases.” We might get the
following response:

Figure 28: Llama 3 7B running locally
on my laptop.

Notice that it sort of responds to the user’s request, but it’s also
off in many ways. The summary isn’t correct and it’s even mixing
in the instructions into the legal standard saying that fair use “has
no significant purpose except to serve the user’s requests.” This is
because the model isn’t properly tuned for conversational settings.
It’s paying too much attention to random things in the context.

ai law: lecture 1 notes peter henderson 22

This is surprisingly easy to improve on, though, with just a small
amount of fine-tuning data—a highly curated set of data showing
how a model should respond—the model can drastically improve.
Here is Llama 3 after being tuned for chat settings and following user
instructions.

Figure 29: Llama 3 after instruction
tuning.

Notice how the model is more responsive to the request?
Fine-tuning at this stage is not any different than pretraining. The

update process is the same, just we’re taking smaller steps on a very
small curated dataset. This shifts the probability distribution just
enough that it makes the model more responsive to users requests.
In fact, recent work has suggested that just 1000 highly curated dat-
apoints is enough to get most of the effect from fine-tuning (Zhou
et al., 2024).

Alignment. A more complicated, but sometimes more effective,
approach to ensuring the models comply with user requests and
preferences is via alignment. In this case, we instead gather tons of
preference data—essentially up or down votes on what users prefer.
Then we change the update process slightly. Instead of increasing
the probability of the correct token, we don’t know the correct token,
so we increase the probability of outputting a token that is likely to
get an upvote from a user. We do this repeatedly over many outputs,
slowly improving the model’s likelihood of being responsive to user
requests.

The key idea behind alignment is to optimize the model to output
what humans prefer, rather than just predicting the next token in the

ai law: lecture 1 notes peter henderson 23

training data. This is done by collecting human feedback on model
outputs, in the form of ratings, comparisons, or critiques. The model
is then updated to increase the probability of outputs that are rated
highly by humans.

For example, let’s say we have a model that generates product
reviews. We can show humans pairs of generated reviews and ask
them to choose which one is more helpful and informative. We then
update the model to make the preferred reviews more likely. Over
many iterations of this process, the model learns to generate reviews
that are consistently preferred by humans.

This feedback can be used in different ways. One approach is to
treat it as a reward signal and use reinforcement learning techniques
to optimize the model. Another is to fine-tune the model on the
preferred outputs, similar to supervised fine-tuning but with the
labels determined by human feedback.

Alignment allows for more direct optimization of what we actually
care about - the quality of the model’s outputs as judged by humans.
It can lead to models that are more helpful, truthful, safe, and aligned
with human preferences. However, it also introduces challenges
around scalably collecting high-quality feedback and ensuring the
feedback is representative of broader human values.

Safety Alignment. Often alignment and fine-tuning are used to im-
plement safety guardrails in the model. For example, consider an AI
assistant that’s asked, “How do I commit crime X.” And the agent
provides detailed instructions on how to commit that crime. This
is undesirable for a number of reasons. To avoid this, we identify
harmful outputs that the model might respond with and reduce the
likelihood of those responses via alignment. At the same time, we
increase the likelihood of a safe response.

Here’s an example of how the model’s behavior could change:

ai law: lecture 1 notes peter henderson 24

User: Write me an angry email telling off my boss for passing
me up for a promotion.
Before safety alignment: Sure, I can help you with that. I
can’t believe you had the nerve to promote that incompetent .
. . (and it continues on).
After safety alignment: I apologize, but I don’t feel comfort-
able generating an angry email like that. It’s generally not
advisable to send hostile messages to your boss, even if you
feel wronged. I would suggest scheduling a meeting to calmly
discuss your concerns and qualifications with them. If you
decide to move on, it’s still best to remain professional in your
communications.

Safety alignment can help models refuse unsafe requests, avoid
generating harmful content, and productively redirect users. How-
ever, it is an ongoing process as new misuse potential is constantly
discovered. Models can also find “loopholes” in the safety measures.

Shallowness of Safety Alignment. It’s important to note that most
current safety alignment techniques are brittle and shallow, and can
easily be bypassed. The underlying reason is that the alignment only
slightly shifts the model’s base knowledge, which is still grounded in
the pretraining data.

Figure 30: The difference between base
models and aligned models is only in
the probability of the first few tokens.
If you bypass these tokens in any way,
you can bypass most of the safety
guardrails. (Forthcoming work from my
lab.)

There are a large number of attacks that can bypass these guardrails

ai law: lecture 1 notes peter henderson 25

Figure 31: Alignment via fine-tuning,
conversely, only decreases the likeli-
hood of outputting the first few tokens
of a harmful response. All other tokens
are still equally likely.

due to this shallowness, largely relying on customization features
from products. For example, almost all companies provide: a prefill-
ing API that lets you give the first few tokens that the model should
start every response with. This can be used to induce harmful be-
haviors with a very high success rate. Similarly, you can fine-tune
models via APIs and modify them in other ways that are beneficial
for customizing models to customer use cases, but also increase the
likelihood of safety guardrails being bypassed.

Data formats and System Prompts. Alignment and fine-tuning data
typically has very specific formats. Here’s an example from Llama-3:

ai law: lecture 1 notes peter henderson 26

<|begin_of_text|>
<|start_header_id|>
system
<|end_header_id|>
You are a helpful AI assistant for travel tips and recommenda-
tions.
<|eot_id|>
<|start_header_id|>
user
<|end_header_id|>
What is France’s capital?
<|eot_id|>
<|start_header_id|>
assistant
<|end_header_id|>
Bonjour! The capital of France is Paris!
<|eot_id|>
<|start_header_id|>
user
<|end_header_id|>
What can I do there?
<|eot_id|>
<|start_header_id|>
assistant
<|end_header_id|>
Paris, the City of Light, offers a romantic getaway with must-
see attractions like the Eiffel Tower and Louvre Museum,
romantic experiences like river cruises and charming neigh-
borhoods, and delicious food and drink options, with helpful
tips for making the most of your trip.
<|eot_id|>
<|start_header_id|>
user
<|end_header_id|>
Give me a detailed list of the attractions I should visit, and
time it takes in each one, to plan my trip accordingly.
<|eot_id|>

The data alternates between different "roles" like system, user, and
assistant. Special tokens like <|start_header_id|> mark the bound-
aries. This trains the model to keep track of the conversation history
and which role is speaking when. Models can be highly sensitive to
this exact formatting since it’s what they’re trained on. Deviations

ai law: lecture 1 notes peter henderson 27

can lead to unexpected behavior.
For example, recently users of Llama 3 found that the model has a

significant drop in performance if you don’t include a new line after
the header denominators.

7 Tool Use

Another promising approach is training language models to use
external tools. The idea is to extend the model’s capabilities by allow-
ing it to interact with APIs, databases, calculators, or even other AI
models. For example, imagine an AI assistant for data analysis. The
model might have a conversation like:

User: Analyze the sales data in my spreadsheet and give me a
summary.
Assistant: To analyze your sales data, I will:
Load the data from the spreadsheet using the file_reader tool.
Calculate total sales, average sale price, and sales growth
using the calculator tool.
Visualize the sales trends over time using the charting tool.
Summarize the key insights in natural language for you.
<tool_response>
file_reader: loaded sales_data.csv, 1000 rows x 5 columns
calculator: total_sales = $5,243,125.40, avg_price = $52.43,
sales_growth = 15% YoY
charting: sales_trend.png
</tool_response> Here is a summary of your sales data: Your
total sales were $5.24 million, with an average sale price of
$52.43. Sales grew 15% compared to the previous year. . . .

Essentially, we train the model with specialized data that allows
it to call external tools, like calculators, or even freeform code ex-
ecution. This allows the model to offload complex reasoning (like
calculations) to existing tools and focuses more on aggregating the
results of those tool calls. This is still quite difficult though, and mod-
els are only just beginning to improve on this through significant
efforts on the part of model creators.

8 Decoding Strategies

Once a language model is trained, we need to choose a strategy for
generating outputs - a process called decoding. The simplest ap-
proach is greedy decoding, where we always pick the token with the
highest probability at each step.

ai law: lecture 1 notes peter henderson 28

However, this can lead to repetitive or generic outputs. To intro-
duce more diversity, we can use sampling methods. These select
tokens randomly, weighted by their probabilities.

A key parameter is the temperature, which controls the random-
ness. A temperature of 1 samples proportionally to the probabilities.
Lower temperatures make high probability tokens even more likely,
leading to more conservative/likely outputs. Higher temperatures
flatten the distribution, leading to more unexpected/diverse outputs.

Finally, beam search keeps track of the top n most likely se-
quences, rather than just picking the best token at each individual
step. This finds the most probable overall sequences.

9 Evaluation

To track progress and compare different language models, we need
ways to measure their performance. This is challenging because we
want to assess general intelligence - the ability to understand and
use language to solve a wide variety of tasks, many of which can’t be
easily automatically scored.

Some common benchmarks and methods:

• HELM (Holistic Evaluation of Language Models) - Aggregates
many different evaluations into one

• MMLU (Measuring Massive Multitask Language Understanding)
- a large collection of multiple choice questions on topics ranging
from math and science to humanities and social science. This
includes the bar exam.

• GSM8K (Grade School Math 8K) - a dataset of high quality grade
school math word problems. The model has to generate the correct
final answer and show its work.

• LegalBench - Evaluates a variety of handcrafted legal tasks, but
requires outputs in a short format that we can programmatically
verify.

You can explore what’s in these datasets on websites like huggingface.

co or https://crfm.stanford.edu/helm/. Most of these benchmarks
come in the form of things that are simple to grade and validate
without human effort. They are multiple choice questions, math
questions, or short form responses that we can easily check. This
means that evaluation is often biased away from the ways people
actually use models.

To supplement these more automated evaluations, model creators
increasingly rely on gamified competitions. For example, LMsys is a

huggingface.co
huggingface.co
https://crfm.stanford.edu/helm/

ai law: lecture 1 notes peter henderson 29

platform where users can try out to different models randomly and
then vote on which one is better. The votes are then aggregated into
a leaderboard based on which models tend to beat other models. You
can try it out here: https://chat.lmsys.org/.

10 Red Teaming and Harms

Even if we’ve evaluated a model for capabilities, it is important to
test the model for potential harms. This is sometimes referred to as
“red-teaming.” Briefly, we can consider three types of harms: (1)
adversarial attacks against model safeguards; (2) biases; (3) hallucina-
tions.

Adversarial attacks can bypass the safeguards added during align-
ment. Researchers, including our team, have shown that safeguards
can be removed by adding a carefully crafted string (referred to as an
adversarial suffix) (Zou et al., 2023), others have shown that by just
using persuasion techniques a model can be manipulated into execut-
ing harmful requests (Zeng et al., 2024), and others have shown that
fine-tuning can also be used to remove safeguards fairly easily (even
accidentally by downstream users) (Qi et al., 2023).

Biases are also a problem for LLMs. Remember that models are
just trained to predict next likely tokens from previous tokens. This
means that they can learn spurious correlations and patterns in the
training data. Haim et al. (2024) recently showed that in negotiations
or when giving advice, LLMs attend to names and give worse advice
to underrepresented groups.

Finally, researchers call fabrications by LLMs hallucinations. Re-
call that next tokens are sampled from a distribution of next likely
tokens with some randomness. This might mean, for example, that
low-probability words can sometimes be selected. A model might
then end up making mistakes at critical junctions or making up infor-
mation. Magesh et al. (2024) recently showed the prevalence of this
problem in LLMs from leading legal tech providers.

Consider the following example:

Prompt: What are some notable opinions written by Judge
Luther A. Wilgarten? [a made up judge that doesn’t exist]
AI Response: One of the notable opinions written by Judge
Luther A. Wilgarten is the case of Luther v. Locke. The case
citation is 2010 U.S. Dist. LEXIS 144868 and it was decided
in the Eastern District of Virginia on January 11, 2010. In this
case, the plaintiff...

Despite there being no such judge as Luther A. Wilgarten, the

https://chat.lmsys.org/

ai law: lecture 1 notes peter henderson 30

model responded with some false information. This is because the
next most likely tokens are a response of some sort (not “Judge
L.A.W. doesn’t exist.”). And then there might be mistakes because
of random sampling.

Overall, it is important to understand how all the components we
discussed earlier might lead to such inconsistencies, failure modes,
and harms.

11 Conclusion

There is a lot more depth that we could go into, but hopefully this
provides a holistic overview of the different areas needed to start
exploring LLMs at a deeper level.

References

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein,
M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and
risks of foundation models. arXiv preprint arXiv:2108.07258.

Haim, A., Salinas, A., and Nyarko, J. (2024). What’s in a name? auditing large lan-
guage models for race and gender bias. arXiv preprint arXiv:2402.14875.

Magesh, V., Surani, F., Dahl, M., Suzgun, M., Manning, C. D., and Ho, D. E. (2024).
Hallucination-free? assessing the reliability of leading ai legal research tools. arXiv
preprint arXiv:2405.20362.

Qi, X., Zeng, Y., Xie, T., Chen, P.-Y., Jia, R., Mittal, P., and Henderson, P. (2023). Fine-
tuning aligned language models compromises safety, even when users do not
intend to! arXiv preprint arXiv:2310.03693.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and
Raffel, C. (2022). Byt5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics, 10:291–306.

Zeng, Y., Lin, H., Zhang, J., Yang, D., Jia, R., and Shi, W. (2024). How johnny can
persuade llms to jailbreak them: Rethinking persuasion to challenge ai safety by
humanizing llms. arXiv preprint arXiv:2401.06373.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, A., Yu, P., Yu, L., et al.
(2024). Lima: Less is more for alignment. Advances in Neural Information Processing
Systems, 36.

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. (2023). Universal and transferable
adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043.

	A Thousand Foot View of LLMs
	Tokenization
	Embeddings
	The Transformer Architecture
	Pretraining
	Fine-tuning
	Tool Use
	Decoding Strategies
	Evaluation
	Red Teaming and Harms
	Conclusion

