
Introduction to Reinforcement Learning
Lecture 1: What is RL?

Peter Henderson

COS 435 / ECE 433

Thanks to helpful slides/notes by Ben Eysenbach, Emma Brunskill, Ben Van Roy, and David Silver.

What is Reinforcement Learning?

What is Reinforcement Learning? Definitions.

Kaelbling, Littman & Moore (1996)

“Reinforcement learning is the problem faced by an agent that learns behavior
through trial-and-error interactions with a dynamic environment.”

Sutton & Barto (2018)

“more focused on goal-directed learning from interaction than are other
approaches to machine learning.”

Van Roy (2024)

“The subject of reinforcement learning addresses the design of agents that learn
to achieve specified goals.”

3 / 79

What is Reinforcement Learning? Definitions.

4 / 79

A brief history of RL

Many Faces of Reinforcement Learning

RL is inherently interdisciplinary — it draws on optimization theory, mathematics,
neuroscience, psychology, and control theory.

6 / 79

History of RL: Many Threads

Modern reinforcement learning weaves together two threads (among others):

1. Optimal control (1950s–): e.g., dynamic programming. Largely no learning
— complete model assumed.

2. Trial-and-error learning (1890s–): from psychology and neuroscience
(Thorndike, Skinner, Pavlov) Learning from interaction in animals.

Many threads came together in the late from mid 1950s to late 1980s to form the field as
we know it, with still lots of cross-over RL researchers across fields. Source: Sutton &
Barto, Ch. 1.6.

7 / 79

History of RL: Psychology

Psychology — trial-and-error learning in animals:

Edward Thorndike (1898): “Law of Effect.” Puzzle-box experiments with cats;
responses that produce a satisfying effect become more likely, discomforting effect
less likely.

B. F. Skinner (1930s): Skinner box — buttons (actions), lights/speakers
(observations), food/shocks (rewards). Operant conditioning.

Ivan Pavlov (1890s): demonstrated classical conditioning by training dogs to salivate
at the sound of a bell, tying the sound to food.

8 / 79

Skinner also wrote a novel about a society run by
calculated reinforcement/conditioning of its citizens

B. F. Skinner, Walden Two (1948): a community run
by behavioral engineering.

Positive reinforcement only; behavior shaped by
rewards and environment to build a utopian
society.

Controversial: free will, control, scaling
behaviorism to society.

Early thought experiment on societal and ethical
consequences of large-scale algorithmic
reinforcement of human behavior. Something to think
about.

9 / 79

History of RL: Neuroscience

Neuroscience — RL as a model of learning in the brain:

Dopamine as reward prediction error; TD learning in the brain.

Impacts of reward pathways on behavior, including depression, addiction, etc.

Many neuroscientists do interdisciplinary work in RL. RL venues often have strong
representation from neuroscience, psychology.

10 / 79

History of RL: Optimal Control and Dynamic Programming

Optimal control (late 1950s): design a controller to
minimize cost over time.

James Clerk Maxwell (1868): centrifugal
governor — early control mechanism in
hardware; spinning balls regulate engine
speed.

Richard Bellman: Bellman equation, dynamic
programming (1957). Discrete stochastic⇒
MDPs.

Ron Howard (1960): policy iteration for MDPs.

DP remains a backbone of RL, but also a key
tool in other fields like macroeconomics.

R. E. Bellman.

11 / 79

History of RL: Control Theory and RL

Connection: Control theory and RL address the same goal — an agent/controller acting
in an environment to optimize long-term outcome — but are formulated differently:

Control theory: often continuous time (integrals), known and deterministic dynamics.

RL: often discrete time (summations), unknown or stochastic dynamics.

12 / 79

History of RL: Trial-and-Error in Early AI

Minsky et al. (1954): Stochastic Neural
Analog Reinforcement Calculator
(SNARC) built at Princeton!
40 Hebb synapses, each holding the
probability that signal comes in one input,
with a hacked together mechanism for
memory, including a surplus
Minneapolis-Honeywell C-1 gyroscopic
autopilot from a B-24 bomber.
Provide a reinforcement signal to update
the network and use it to solve a
simulated maze, like reinforcement
learning research with rats.

The last remaining neuron of SNARC.

13 / 79

History of RL: Arthur Samuel’s Checkers (1959)

Arthur Samuel at IBM: checkers program that
learned to beat its creator.

First program to learn from self-play.

Key ideas later formalized as
temporal-difference learning.

Coined the term “machine learning”.

“Programming computers to learn from experience should
eventually eliminate the need for much of this detailed
programming effort.” — Arthur L. Samuel, Some Studies in
Machine Learning Using the Game of Checkers, 3 IBM J. Res. &
Dev. 535 (1959).

Arthur Samuel (1901–1990).

14 / 79

History of RL: The 1970s–80s Revival

After a quiet period, RL research revived:

Harry Klopf (1972–82): early
temporal-difference learning ideas, learning
from trial-and-error.

Sutton & Barto (1981–88): TD learning,
TD(λ), actor-critic.

Chris Watkins (1989): Q-learning —
model-free, off-policy.

More!

By the 1990s the three threads merged into modern
RL.

Sutton & Barto

15 / 79

History of RL: Deep RL Revolution (2013–present)

2013: DQN (DeepMind)

Deep net + Q-learning, raw pixels

Superhuman on many Atari games

Atari Breakout (DQN).

2016: AlphaGo

Beat Lee Sedol at Go (10170

positions)

AlphaZero (2017): zero human
data

AlphaGo vs Lee Sedol.

16 / 79

RL + Language Models: The RL+LLM Era (2020s–present)

The RL+LLM Pipeline

1. Pre-train LLM on text

2. Collect human preferences or
create RL environments

3. Fine-tune with RL to maximize the
reward signal using the LLM as the
starting point.

E.g.,: ChatGPT, GPT-4; Claude; Llama
2/3; Gemini; DeepSeek-R1; etc.

17 / 79

Other Real-world RL Uses

RL for fusion control (e.g., Degrave et al., 2022).

Believe it or not, bandit algorithms at IRS.

RL for chip design.

RL for robots.

18 / 79

How is RL different? What makes it hard? Why now?

How is RL Different from Other Approaches?

As you will see, you can reformulate many methods to and from the RL paradigm
— but RL is typically distinct:

vs. supervised learning: No labels for the “right” action; only a reward
signal. Your actions affect the data you see next.
vs. control theory: Dynamics and rewards are typically unknown; we learn
from interaction, not a given model.
vs. plain optimization: We optimize over sequences of decisions with
delayed consequences, under uncertainty.

20 / 79

What Makes RL Hard? Why Haven’t We Solved It Yet?

Four core challenges (we will revisit these later):

1. Exploration — How to gather useful experience?
2. Delayed consequences — Which past actions caused the reward? (credit

assignment)
3. Sample efficiency — How to learn with limited data?
4. Reward specification — How to define “good” behavior?

21 / 79

Exploration vs Exploitation

The fundamental tradeoff in RL:

Exploitation
Use what you know
Take the best known action
Greedy, safe

Exploration
Try new things
Gather information
Risky, but might find better

Example

Restaurant choice: go to your favorite, or try something new that may or may not
be better?

22 / 79

Credit Assignment

Problem: Which actions led to the reward?

Rewards are often delayed
A chess game has thousands of moves but one outcome
How do we know which moves were good?

The Credit Assignment Problem

Determining how much each past action contributed to the current reward.

23 / 79

Sample Efficiency

Problem: RL often requires lots of data

AlphaGo: millions of games of self-play
Atari: billions of frames
OpenAI Dactyl: 13,000 years of simulated experience

Challenge

Real-world interaction is expensive, slow, and sometimes dangerous. How can we
learn efficiently?

24 / 79

Reward Specification

Problem: Specifying the “right” reward is hard, will optimize and find weird
solutions.
Examples:

[Video] Hit the target with the baseball. You assume, throwing the ball...
[Video] Win at this racing game... By finishing the race?
Win a capture the flag cybersecurity challenge, but successfully hacking... the
evaluation docker instance?

The reward defines the problem. A poorly-specified reward leads to unintended
behavior — the agent optimizes what you asked for, not what you meant.

25 / 79

https://www.youtube.com/watch?v=mf9w6pz_tfQ
https://www.youtube.com/watch?v=tlOIHko8ySg

Why is Now an Exciting Time to Work on RL?

RL + large models: Large pre-trained models provide a useful starting point,
enabling RL to work much more efficiently for open-ended domains.

Real-world impact: Fusion control, chip design, data center cooling, robotics,
healthcare, recommendation systems. RL is moving from games and sims into
deployed systems.

Open problems: Sample efficiency, safe exploration, reward design, and scaling RL
to complex, long-horizon tasks are unsolved; there is lots of room to contribute.

Understanding self-driven intelligence: Importantly, RL is also about a
fundamental science of learning from experience, and general artificial intelligence,
which still cannot compete with the sample efficiency and generalizabilty of human
learning.

26 / 79

Course Goals

This course will give you the foundations to understand, implement, and extend
modern RL algorithms and to engage with these challenges. As well as begin to
engage you in thinking about the latest frontier research problems in RL.

27 / 79

Discussion - What are some areas/applications of RL that
you are most excited about?

Course Logistics

Participation — 15%
Starting next week: Google form with in-class polling questions; breakout discussions
on assigned papers; should submit reading reflection on the assigned papers with
the marked up pdf of the paper.

Problem sets — 15%
3 assignments, due every other week starting in two weeks; small theory problems.

Programming assignments — 20%
3 assignments, starting in two weeks; small programming tasks.

Final project — 50%
Biggest one! Research project on a topic in RL; aim for academic workshop-level
quality.

29 / 79

Getting in the Course

Fill out this Google Form if you’re waiting, can’t make any promises, but raised the cap:
https://forms.gle/5siGARuazffRtFqu5
Please drop ASAP if you’re not likely to take it so that we can let others in.
No formal auditing, but can sit in on lectures if there are seats.

30 / 79

https://forms.gle/5siGARuazffRtFqu5

Summary

Course Roadmap

This course will try to get very quickly (after policy-based RL) into
advanced topics, often touching on RL with large langauge models. We will
have a classic paper and a newer paper for dicussion each week.

1. RL Basics: bandits, policy and value iteration
2. Value-Based RL: Q-learning, DQN, and extensions
3. Policy-Based RL: REINFORCE, PPO, stability and convergence
4. Model-Based vs Model-Free RL: when to learn a model
5. Advanced Topics: actor-critic methods (SAC, TD3), reward specification
6. Frontiers: RLHF, offline RL, multi-agent RL

Philosophy

Ramp up from scratch to engaging with the frontiers of RL research in one
semester, with emphasis on function approximation and deep RL. 32 / 79

Resources

Resources will be posted after the class for the next week.

33 / 79

Break - 10 minutes

The Agent-Environment Interface

The Agent-Environment Interface

Agent
π(a | s)

Environment
T (s′ | s, a)

action at

state st+1, reward rt+1

At each discrete time step t:
1. Agent observes state st and selects action at via policy π

2. Environment transitions to st+1 via T (st+1 | st, at)
3. Reward function emits rt+1; agent uses (st, at, rt+1, st+1) to update

Convention: rt+1 is the reward received after taking action at (Sutton & Barto).

36 / 79

Reward as a Separate Function

Agent
π(a | s)

Dynamics
T (s′ | s, a)

Reward
r(s, a, s′)

action at

state st+1 st+1

reward rt+1

Conceptually can think of reward as separate from the environment and its
dynamics since we might add things like curiousity bonuses, etc.

37 / 79

Key Components

State s ∈ S: the current situation

Action a ∈ A: what the agent can do

Reward r(s, a) ∈ R: scalar feedback signal

Transition dynamics T (s′ | s, a): how the environment evolves

Policy π(a | s): the agent’s strategy

Key Assumption

Both the reward function r and dynamics T are unknown to the agent. Experience
is organized into episodes (trajectories): τ = (s0, a0, r1, s1, a1, r2, . . .)

38 / 79

The Objective

Goal: Maximize expected cumulative reward

max
π

Eπ

[
T∑
t=0

r(st, at)

]

39 / 79

Rewards

“All goals can be described by the maximisation
of expected cumulative reward.”

— David Silver

Examples of reward signals:
Helicopter: +reward for desired trajectory, −reward for crashing
Chess: +1 win, −1 loss, 0 otherwise
Robot walking: +forward progress, −falling
Portfolio management: profit at each step

Is this always true?

Specifying the “right” reward is one of the hardest problems in RL.
40 / 79

The Discount Factor γ

How much weight do we put on rewards at different time steps?
Do you care more about getting high rewards now or in the future?

Can also look at shorter temporal distances, discounting the future
rewards:

max
π

Eπ

[
∞∑
t=0

γtr(st, at)

]
where γ ∈ [0, 1).

41 / 79

Visualizing the Discount Factor

t

γt

1 2 3 4 5 6

0.25

0.5

0.75

1.0

γ = 0.5

γ = 0.9

γ = 0.99
Key observations:

Higher weights on near-term
rewards
Lower weights on long-term
rewards

42 / 79

Interpreting the Discount Factor

Rule of thumb: γ corresponds to reasoning 1
1−γ

steps ahead

Discount γ Effective Horizon

0.5 1
1−0.5 = 2 steps

0.9 1
1−0.9 = 10 steps

0.99 1
1−0.99 = 100 steps

0.999 1
1−0.999 = 1000 steps

Why does this work?

The weights γt resemble a geometric distribution with parameter γ.
Such a distribution has expected value 1

1−γ .
43 / 79

Why Discount? Reasons for γ < 1

1. Mathematical convenience
Ensures the sum

∑∞
t=0 γ

trt is finite
Required for infinite horizon problems

2. Uncertainty about the future
Model might be wrong far into future
Episode might terminate unexpectedly

3. Preference for sooner rewards
“A bird in the hand is worth two in the bush”
Models economic time preference

Note
Because γt → 0 for large t, truncating the sum has little effect in practice.

44 / 79

Human Discounting: Not Quite Exponential

t

weight

Exponential
γt

Hyperbolic
1

1+kt

Humans exhibit hyperbolic discounting:

Steeper drop for near-term
Flatter for distant future
Leads to time inconsistency

Example:

Prefer $100 today over $110 tomorrow
But prefer $110 in 31 days over $100 in
30 days

RL uses exponential discounting

Makes sure there is time consistency: optimal policy doesn’t change as time passes.

45 / 79

The MDP Formalism

The Markov Decision Process (MDP)

MDP: The formal mathematical framework for RL

Markov Decision Process
An MDP is a tuple (S,A, T,R, γ):

S: State space (all possible situations)
A: Action space (all possible actions)
T (s′|s, a): Transition dynamics (how environment evolves)
R(s, a): Reward function (scalar feedback)
γ ∈ [0, 1): Discount factor

Key Assumption in RL
Both T and R are unknown — the agent must learn from interaction.

47 / 79

The Markov Property

Markov Property

The future depends only on the present, not the past.

T (st+1|st, st−1, . . . , s0) = T (st+1|st)

Why: The current state contains all relevant information for predicting the future.

Examples

Chess: board position is Markov
Blackjack: need to track cards played (not Markov with just current hand, but
can reformulate to be Markov)

48 / 79

Return: Cumulative Discounted Reward

The return Gt is the cumulative discounted reward from time t:
Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =

∑∞
k=0 γ

krt+k+1

The return is a random variable — depends on policy π, dynamics T , and
rewards R.

49 / 79

Value Functions

State-Value Function V π(s): Expected return starting from s, following π
V π(s) = Eπ[Gt|st = s] “How good is it to be in state s?”

Action-Value Function Qπ(s, a): Expected return starting from s, taking a, then
following π
Qπ(s, a) = Eπ[Gt|st = s, at = a] “How good is it to take action a in state s?”

Relationship
V π(s) =

∑
a π(a|s)Qπ(s, a) (For deterministic π: V π(s) = Qπ(s, π(s)))

50 / 79

Optimal Value Functions and Policy

The optimal value functions are the best achievable:
V ∗(s) = maxπ V

π(s) Q∗(s, a) = maxπ Q
π(s, a)

Key Result

Given Q∗, the optimal policy is simple: π∗(s) = argmaxaQ
∗(s, a)

Finding Q∗ or V ∗ is the core of many RL algorithms!

51 / 79

Bellman Equations

Value functions satisfy a recursive relationship:

Value now = Immediate reward + Discounted future value

Bellman Expectation Equation (for policy π)
V π(s) =

∑
a π(a|s) [R(s, a) + γ

∑
s′ T (s

′|s, a)V π(s′)]

Bellman Optimality Equation
V ∗(s) = maxa [R(s, a) + γ

∑
s′ T (s

′|s, a)V ∗(s′)]

52 / 79

Categorizing RL Agents

Value
Based

Policy
BasedActor-

Critic

Q-learning
DQN

REINFORCE
PPO

A2C, SAC
TD3

Model-Free
Learn directly from experience

(most of this course)

Model-Based
Learn a model, then plan

(DreamervX, many robotics settings)
53 / 79

RL Terminology: State and Action Spaces

State Spaces
Discrete/Finite: Countable states
(e.g., board positions in chess)
Continuous: S ⊆ Rn (e.g., robot
joint angles)
Tabular: Small discrete S — can
store V (s) for every s in a table

Action Spaces
Discrete: Finite choices (e.g.,
left/right/jump)
Continuous: A ⊆ Rm (e.g.,
torques, forces)
Control: Often implies continuous
actions/states (from control theory)

Why This Matters

Tabular methods: Exact solutions, but don’t scale to large/continuous spaces
Function approximation: Use neural nets to generalize across states —
required for most real problems 54 / 79

Computing Optimal Policies: Dynamic Programming

How Do We Find the Optimal Policy in Tabular MDPs?

Given an MDP (S,A, T, R, γ), how do we compute π∗?
Two classic dynamic programming algorithms:

1. Policy Iteration: Evaluate a policy, then improve it. Repeat.
2. Value Iteration: Iteratively compute optimal values directly.

Assumption

These algorithms assume we know the MDP (dynamics T and rewards R). Later
we’ll learn methods that don’t require this.

56 / 79

Example: Grid World MDP

+10

−5

−5

S0

0

1

1

2

2

3

3

States:
S = {(x, y) : x, y ∈ {0, 1, 2, 3}}

16 grid positions

Actions: A = {↑, ↓,←,→}

Rewards:

• Goal (3, 3): +10
• Hazards: −5
• Step cost: −0.04

Discount: γ = 0.9

57 / 79

Grid World: Stochastic Dynamics

Agent

80%

10% 10%

Intended: ↑

“Slippery” dynamics:

80% move in intended direction
10% slip to each perpendicular
Hitting wall ⇒ stay in place

Why stochastic dynamics?

Models real-world uncertainty (wind, slippery
surfaces, motor noise)
Makes planning non-trivial — can’t just find shortest
path
Agent must account for risk of ending up in bad
states

Transition Function
If action is ↑ in state s: T (sabove|s, ↑) = 0.8, T (sleft|s, ↑) = 0.1,
T (sright|s, ↑) = 0.1

58 / 79

Solving MDPs: What We Want

In an MDP, we want an optimal policy
π∗ : S → A

A policy π gives an action for each state

An optimal policy maximizes expected
sum of rewards

Contrast: In deterministic planning,
want an optimal plan (sequence of
actions from start to goal)

+1

−1

→ → →

↑ ↑

↑ ← ← ←
1 2 3 4

1

2

3

Example: Optimal policy for a 3×4 grid world

59 / 79

How Many Policies Are There?

Grid World: 16 states, 4 actions
Question: How many deterministic policies exist?

Each state needs an action assignment
|A| choices per state, |S| states
Total: |A||S| deterministic policies

Grid World Answer
416 = 4,294,967,296 deterministic policies (over 4 billion!)

Scaling Problem

Even small MDPs have exponentially many policies. We need efficient algorithms
— not brute-force search!

60 / 79

MDP Control: Finding the Optimal Policy

Goal: Compute the optimal policy

π∗(s) = argmaxπ V
π(s)

Naive Approach: Policy Search

Enumerate all |A||S| policies, evaluate each, pick best.
Far too slow! We need dynamic programming algorithms.

61 / 79

Value Iteration: Key Idea

Idea: Iteratively compute optimal values for increasingly long horizons.

Key Idea

Maintain Vk(s) = optimal value if you have k steps left to act.
Iterate to consider longer and longer horizons until convergence.

Intuition:
V0(s) = 0 (no steps left⇒ no reward)
V1(s) = maxaR(s, a) (one step: just get immediate reward)
Vk(s) builds on Vk−1 (optimal k-step value uses optimal (k−1)-step values)

62 / 79

Value Iteration: The Algorithm

Value Iteration Algorithm

Initialize: V0(s) = 0 for all s
For k = 0, 1, 2, . . . until convergence (e.g., ∥Vk+1 − Vk∥∞ < ϵ):

For each state s:

Vk+1(s) = maxa
[
R(s, a) + γ

∑
s′∈S T (s′|s, a)Vk(s

′)
]

Extract policy (after convergence or at any iteration):

π(s) = argmaxa [R(s, a) + γ
∑

s′ T (s
′|s, a)V (s′)]

63 / 79

The Bellman Operator

Bellman operators offer concise notation for expressing value iteration as a
single operation.

Bellman Optimality Operator B : R|S| 7→ R|S|

(BV)(s) = maxa∈A
[
R(s, a) + γ

∑
s′∈S T (s′|s, a)V (s′)

]
Value iteration is simply: Vk+1 = BVk

Bellman Policy Operator Bπ : R|S| 7→ R|S|

(BπV)(s) =
∑

a∈A π(a|s)
[
R(s, a) + γ

∑
s′∈S T (s′|s, a)V (s′)

]
Policy evaluation: V π

k+1 = BπV π
k

64 / 79

Value Iteration: First Iteration (k = 0→ k = 1)

k = 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

010

−5

−5

⇒

k = 1

0 0 0 0

0 0

0

0 0

-.5

-.5

7.2

7.2

10

−5

−5

Terminal states (goal, hazards) have fixed values:

V (goal) = +10, V (hazard) = −5

Example: State (2, 3) taking action → toward goal:

V1(2, 3) = γ
∑
s′

T (s′|s,→) · V0(s
′)

= 0.9×
[
0.8 · 10︸ ︷︷ ︸
reach goal

+0.1 · 0 + 0.1 · 0︸ ︷︷ ︸
slip

]
= 0.9× 8 = 7.2

State (1, 1) is adjacent to both hazards:

Best action avoids hazards but risks slipping

V1(1, 1) = 0.9× 0.1× (−5) = −0.5

65 / 79

Value Iteration: Converged Values

V ∗ (Converged)

2.8 3.2 3.7 5.3

3.2 2.1 −5 6.3

3.7 −5 6.5 8.6

5.3 6.3 8.6 10

0

0

1

1

2

2

3

3

Key observations:

Values “flow” outward from the goal

Higher values ⇒ closer/safer path to goal

State (1, 1): value 2.1 (lower than neighbors 3.2)

Adjacent to both hazards, risk of slipping

Optimal policy follows the value gradient:

From (0, 0): go ↑ (value 3.2 > 2.8)

From (1, 1): go ↓ to avoid hazards

From (2, 3): go → to goal

Convergence

Converges in ∼16 sweeps (γ = 0.9). Code example in lecture
notes.

66 / 79

Contraction Mapping Theorem

Theorem (Contraction Mapping)

For discount factor γ ∈ [0, 1) and all V, V ′ ∈ R|S|: ∥BV − BV ′∥∞ ≤ γ∥V − V ′∥∞
Proof: For all s ∈ S,
(BV)(s)− (BV ′)(s) = max

a

[
r(s, a) + γ

∑
s′ T (s

′|s, a)V (s′)
]
−max

a

[
r(s, a) + γ

∑
s′ T (s

′|s, a)V ′(s′)
]

≤ max
a

[
r(s, a) + γ

∑
s′ T (s

′|s, a)V (s′)− r(s, a)− γ
∑

s′ T (s
′|s, a)V ′(s′)

]
= γmax

a

∑
s′ T (s

′|s, a)(V (s′)− V ′(s′))

≤ γmax
s′

|V (s′)− V ′(s′)| = γ∥V − V ′∥∞ □

67 / 79

Convergence of Value Iteration

Theorem (Convergence)

For γ ∈ [0, 1), the sequence V0, V1, . . . with Vk+1 = BVk converges to V ∗.

Proof: Recall V ∗ = BV ∗ (fixed point). For each k:

∥V ∗ − Vk+1∥∞ = ∥BV ∗ − BVk∥∞ ≤ γ∥V ∗ − Vk∥∞

By induction: ∥V ∗ − Vk∥∞ ≤ γk∥V ∗ − V0∥∞ → 0 as k →∞. □

Convergence Conditions

Value iteration converges if: (1) γ < 1, OR (2) all policies reach a terminal state.

68 / 79

Asynchronous Value Iteration

Value iteration can be applied in a distributed and asynchronous manner — different
states can be updated at different times, even with outdated values.

Theorem (Asynchronous Convergence)

Fix a finite MDP (S,A, T), reward r : S ×A → R, and γ ∈ [0, 1). If S0,S1, . . . is a sequence
of subsets of S such that each state s ∈ S appears infinitely often, then for any Ṽ0, the
sequence generated by

Vk+1(s) =

{
(BVk)(s) s ∈ Sk
Vk(s) s /∈ Sk

converges to V ∗.

Proof sketch: Since B is a γ-contraction, for updated states s ∈ Sk:

|V ∗(s)− Vk+1(s)| ≤ γ∥V ∗ − Vk∥∞
Because each state appears infinitely often, the error contracts for all states. □

Implication: Gauss-Seidel VI (update one state at a time using latest values) also converges —
often faster than synchronous updates!

69 / 79

Intuition about Better Algorithms

Note
Understanding contraction mappings and other tricks for building intuition on
convergent algorithms helps design better RL optimization methods. We’ll see
something similar again in policy gradients.

70 / 79

Discussion: Speeding Up Value Iteration

Turn to your neighbor and discuss:

Question
What strategies can we use to speed up convergence of value iteration?

Take 2–3 minutes to brainstorm with your neighbor.

71 / 79

Variants of Value Iteration

Gauss-Seidel VI: Update states in order, using new values immediately.
When computing V (si), use already-updated V (s1), . . . , V (si−1)

Often converges faster — new information propagates within an iteration
Same convergence guarantees as standard VI

Asynchronous VI: Update states in any order, even in parallel.
Each processor updates its own subset of states
Converges as long as every state is updated infinitely often
Great for distributed/parallel implementations
Make a note of this! Modern RL for LLMs is all about throughput, async
methods help a lot!

72 / 79

Policy Iteration: Overview

Idea: Alternate between evaluating and improving the policy.

1. Initialize: Start with arbitrary policy π0

2. Policy Evaluation: Compute V πi for current policy
3. Policy Improvement: Compute better policy πi+1

4. Repeat until policy stops changing

Policy
Evaluation

Policy
Improvement

V πi

πi+1

73 / 79

Policy Evaluation: Iterative Algorithm

Goal: Compute V π(s) for all states s

Iterative Policy Evaluation

Initialize V0(s) = 0 for all s
For k = 1, 2, . . . until convergence:

V π
k (s) =

∑
a π(a|s)

[
R(s, a) + γ

∑
s′∈S T (s′|s, a)V π

k−1(s
′)
]

For a deterministic policy π(s), this simplifies to:

V π
k (s) = R(s, π(s)) + γ

∑
s′∈S T (s′|s, π(s))V π

k−1(s
′)

74 / 79

Policy Improvement

Given V πi, how do we get a better policy?
Step 1: Compute Qπi(s, a) for all states and actions:

Qπi(s, a) = R(s, a) + γ
∑

s′∈S T (s′|s, a)V πi(s′)

Step 2: Act greedily with respect to Qπi :

πi+1(s) = argmaxaQ
πi(s, a) ∀s ∈ S

Intuition
If taking action a then following πi is better than just following πi, we should take a!

75 / 79

Why Does Policy Iteration Converge?

Key insight: The greedy action is at least as good as the current policy.

max
a

Qπi(s, a) ≥ Qπi(s, πi(s)) = V πi(s)

Monotonic Improvement Theorem

V πi+1(s) ≥ V πi(s) for all states s.

Consequences:
Policy iteration converges to optimal policy π∗

Maximum |A||S| iterations (number of policies is finite)
In practice, converges much faster than that.

76 / 79

Policy Iteration: Full Algorithm

Policy Iteration Algorithm

Initialize: π0(s) arbitrarily for all s; set i = 0

Repeat:

1. Policy Evaluation: Compute V πi by iterating:
V πi

k (s) = R(s, πi(s)) + γ
∑

s′ T (s
′|s, πi(s))V

πi

k−1(s
′)

until convergence

2. Policy Improvement: For all s ∈ S:
Qπi(s, a) = R(s, a) + γ

∑
s′ T (s

′|s, a)V πi(s′)

πi+1(s) = argmaxa Q
πi(s, a)

3. i← i+ 1

Until: πi = πi−1 (policy unchanged)
77 / 79

Questions?

Next week’s papers/reading

Next week’s papers/reading will be posted after the class with an announcement
on submitting the reading reflection. We will be moving beyond tabular methods
pretty quickly and going straight into value-based function approximation methods.

79 / 79

	What is Reinforcement Learning?
	A brief history of RL
	How is RL different? What makes it hard? Why now?
	Discussion - What are some areas/applications of RL that you are most excited about?
	Summary
	Break - 10 minutes
	The Agent-Environment Interface
	The MDP Formalism
	Computing Optimal Policies: Dynamic Programming
	Value Iteration
	Policy Iteration

	Questions?

