
Value-Based Reinforcement Learning
Lecture 2

Peter Henderson

COS 435 / ECE 433

Thanks to helpful slides/notes by Ben Van Roy, Emma Brunskill, Ben Eysenbach, and Csaba Szepesvári.

Today’s Agenda

1. Recap: Value Iteration
2. Discussion: Speeding Up Value Iteration
3. Convergence of Asynchronous Value Iteration
4. Value Function Learning (Model-Free)
5. Bias-Variance Tradeoff in Multi-Step Backups
6. Q-Learning, SARSA, Expected SARSA
7. Deep Q-Networks (DQN) and Rainbow

2 / 71

Recap from Lecture 1

Logistics

Starting next week: submit reading responses.
Question about format:
1. One paragraph summary with one criticism
and one observation per required paper.
2. A marked up pdf with your thoughts.

4 / 71

Recap from Lecture 1

Recap: The MDP Framework

An MDP is a tuple (S,A, T,R, γ):

S: State space A: Action space
T (s′|s, a): Transition dynamics R(s, a): Reward function
γ ∈ [0, 1): Discount factor

Key Value Functions

V π(s) = Eπ

[∑∞
t=0 γ

trt+1 | s0 = s
]

— “How good is state s?”
Qπ(s, a) = Eπ

[∑∞
t=0 γ

trt+1 | s0 = s, a0 = a
]

— “How good is action a in
state s?”

Relationship: V π(s) =
∑

a π(a|s)Qπ(s, a) Optimal: π∗(s) = argmaxa Q
∗(s, a)

6 / 71

Recap: Bellman Equations

Value functions satisfy a recursive relationship: Value now = Immediate reward +
Discounted future value

Bellman Expectation Equation (for policy π)
V π(s) =

∑
a π(a|s) [R(s, a) + γ

∑
s′ T (s

′|s, a)V π(s′)]

Bellman Optimality Operator B : R|S| → R|S|

(BV)(s) = maxa∈A [R(s, a) + γ
∑

s′ T (s
′|s, a)V (s′)]

7 / 71

Recap: Value Iteration

Value Iteration Algorithm

Initialize: V0(s) = 0 for all s
For k = 0, 1, 2, . . . until convergence (∥Vk+1 − Vk∥∞ < ϵ):

For each state s:

Vk+1(s) = maxa [R(s, a) + γ
∑

s′ T (s
′|s, a)Vk(s

′)]

In operator notation: Vk+1 = BVk

Extract policy: π(s) = argmaxa [R(s, a) + γ
∑

s′ T (s
′|s, a)V (s′)]

8 / 71

Recap: Contraction and Convergence

Theorem (Contraction Mapping)

∥BV − BV ′∥∞ ≤ γ∥V − V ′∥∞ for all V, V ′ ∈ R|S|

Theorem (Convergence of Value Iteration)

The sequence V0, V1, . . . with Vk+1 = BVk converges to V ∗:
∥V ∗ − Vk∥∞ ≤ γk∥V ∗ − V0∥∞ → 0

Convergence rate is geometric: error shrinks by factor γ per iteration.

9 / 71

Discussion: Speeding Up Value Iteration

Discussion: Speeding Up Value Iteration

Turn to your neighbor and discuss/recall:

Question
What strategies can we use to speed up convergence of value iteration?

Take 3–4 minutes to brainstorm with your neighbor.

11 / 71

Strategies for Speeding Up Value Iteration

1. Gauss-Seidel VI: Update states in order, use new values immediately.
When computing V (si), use already-updated V (s1), . . . , V (si−1)

Information propagates within a single sweep — often converges faster

2. Asynchronous VI: Update states in any order, even in parallel.
Each processor updates its own subset of states
Converges as long as every state is updated infinitely often

3. Prioritized Sweeping: Focus updates on states with the largest Bellman error.
Maintain a priority queue ordered by |V (s)− (BV)(s)|
Focus computation where it matters most

12 / 71

Convergence of Asynchronous Value Iteration

Discussion: Proving Asynchronous Convergence

Turn to your neighbor and discuss:

Question
Under what conditions does asynchronous value iteration converge? Under what
conditions does it not?

Take 2–3 minutes to brainstorm with your neighbor.

14 / 71

Asynchronous Value Iteration

Theorem (Asynchronous Convergence)

Fix a finite MDP (S,A, T,R) and γ ∈ [0, 1). If S0,S1, . . . is a sequence of subsets of S such
that each state s ∈ S appears infinitely often, then for any V0:

Vk+1(s) =

{
(BVk)(s) s ∈ Sk
Vk(s) s /∈ Sk

converges to V ∗.

The contraction property plus visiting all states infinitely often does the heavy lifting —
even partial updates make progress toward V ∗.

15 / 71

Proof of Asynchronous Convergence

Proof: Define ek = ∥V ∗ − Vk∥∞. We show ek → 0.
For any updated state s ∈ Sk:

|V ∗(s)− Vk+1(s)| = |(BV ∗)(s)− (BVk)(s)| ≤ γ∥V ∗ − Vk∥∞ = γ ek

For non-updated states s /∈ Sk: |V ∗(s)− Vk+1(s)| = |V ∗(s)− Vk(s)| ≤ ek.
So ek+1 ≤ ek (error never increases). But we need it to strictly decrease.
Since each state appears infinitely often, for any s there exists ks > k with s ∈ Sks :

|V ∗(s)− Vks+1(s)| ≤ γ eks ≤ γ ek

After a “full cycle” where every state has been updated at least once, the max error contracts by at
least γ. Repeating: e→ 0. □

16 / 71

Async Value Propagation: First Wave

Before

10

0

0

0

0

0

1

1

2

2

3

3

⇒

After Step 1

109

9

0

0

1

1

2

2

3

3

Setup: 4×4 grid, deterministic. Goal
(3, 3) = +10, γ = 0.9. All other values start at 0.
Step 1: Update (2, 3) and (3, 2) — the goal’s
neighbors:

V (2, 3) = γ · V (3, 3)

= 0.9× 10 = 9

Similarly V (3, 2) = 9.
Crucially: These fresh values are available
immediately for the next update — we don’t wait
for a full sweep to finish.

17 / 71

Async Value Propagation: Values Continue to Back Up

After Step 1

109

9

0

0

1

1

2

2

3

3

⇒

After Step 2

109

9

8.1

8.1

8.1

0

0

1

1

2

2

3

3

Step 2: Update the next ring — (1, 3), (2, 2),
(3, 1):

V (1, 3) = γ · V (2, 3) = 0.9× 9 = 8.1

The 9 came from Step 1 — not the old value of 0.
Connector effect: (2, 3) and (3, 2) act as
connectors — once they receive value from the
goal, they immediately relay it deeper into the grid.

Intuition/Analogy: Ripples
In async VI, you can have different “ripples”
connect if you do infinite passes leading to
convergence.

18 / 71

From Planning to Learning

From Planning to Learning

So far: Dynamic programming — assumes
known T and R. But in most real RL problems, we
don’t know the dynamics or reward!

Key Question
How do we compute value functions and policies from
data, without a model?

Two big ideas:

1. Value function learning: Estimate V π or Qπ from
trajectories

2. Control without a model: Find Q∗ from
interaction data

Agent

Env

atst, rt

The agent-environment loop: learn
from interaction, not a model.

20 / 71

Value Function Learning

Monte Carlo Estimation of Value Functions

Goal: Given trajectories from policy π, estimate V π(s).
Idea: For each state s visited, compute the actual return that followed, then average.
Given trajectory τ = (s0, r0, s1, r1, . . .): Gt =

∑∞
k=0 γ

krt+k

Monte Carlo Update (First-Visit)
For each first visit to state s in an episode with observed return Gt:

V (st)← E[Gt]

Properties: Unbiased estimate of V π, but high variance — requires many full episodes.

22 / 71

Temporal Difference (TD) Learning

Key insight: We don’t need to wait for the end of an episode! Use the Bellman equation
to bootstrap: update predictions with predictions.

TD(0) Update
After observing transition (s, a, r, s′): V (s)← V (s) + α

(
r + γV (s′)︸ ︷︷ ︸

TD target

−V (s)
)

The quantity δ = r + γV (s′)− V (s) is the TD error.

23 / 71

MC vs. TD: Bias-Variance Tradeoff

Monte Carlo

Target: Gt = rt + γrt+1 + γ2rt+2 + · · ·
Unbiased estimate of V π(s)

High variance: many stochastic terms
Requires complete episodes

TD(0)

Target: r + γV (s′)

Biased: bootstraps off current V
Lower variance: one reward, one
transition
Can update every step

The Fundamental Tradeoff
MC uses long rollouts (low bias, high variance). TD uses short bootstraps (higher bias,
lower variance). Neither is universally better — best choice depends on the problem.

24 / 71

Multi-Step Returns: Interpolating MC and TD

We can use n-step returns to smoothly interpolate:

G
(n)
t = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnV (st+n)

n Method

n = 1 TD(0) — one reward + bootstrap
n = k k-step TD — k rewards + bootstrap
n =∞ Monte Carlo — all rewards, no bootstrap

n-step TD Update
V (st)← V (st) + α

(
G

(n)
t − V (st)

)
Larger n: less bias, more variance. Smaller n: more bias, less variance.

25 / 71

Bias-Variance Tradeoff: Kearns & Singh

Formalizing the Bias-Variance Tradeoff

To prove the bound, Kearns & Singh analyze a clean “phased” version of TD(k):
In each phase t, for every state s:

1. Collect n independent trajectories of length k from s under π
2. Each trajectory i produces random rewards ri0, r

i
1, . . . , r

i
k−1 with riℓ ∈ [−1, 1]

3. Update by averaging over all n trajectories:

V̂t+1(s) =
1

n

n∑
i=1

[
ri0 + γri1 + · · ·+ γk−1rik−1︸ ︷︷ ︸
k random rewards (each ∈ [−1, 1])

+ γkV̂t(s
i
k)︸ ︷︷ ︸

bootstrap

]
Meanwhile, the true value decomposes as:

V π(s) = E[r0] + γ E[r1] + · · ·+ γk−1E[rk−1] + γk E[V π(sk)]

The update averages 1
n

∑
i γ

ℓriℓ at each step ℓ — these are sample means of bounded,
independent random variables concentrating around E[rℓ]. This lets us use a common trick in RL
theory literature: Hoeffding’s inequality.

27 / 71

Applying Hoeffding’s Inequality

Since each r
(j)
ℓ ∈ [−1, 1], Hoeffding guarantees for each reward step ℓ:

P

(∣∣∣∣ 1n
n∑

j=1

r
(j)
ℓ − E[rℓ]

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2n2ϵ2

n · 22

)
Solving for ϵ: Fix the probability of exceeding ϵ to be ≤ δ:

2 exp
(−nϵ2

2

)
= δ =⇒ −nϵ2

2
= log(δ/2) =⇒ ϵ =

√
2 log(2/δ)

n

So by Hoeffding, with n samples and prob. ≥ 1− δ:∣∣∣∣ 1n ∑
j

r
(j)
ℓ − E[rℓ]

∣∣∣∣ ≤ ϵ =

√
2 log(2/δ)

n

Union bound over k steps: We need all k reward terms estimated to ϵ accuracy simultaneously.
Require each to hold with prob. δ/k, so the probability we fail on any term is ≤ δ:

ϵ =

√
2 log(2k/δ)

n

28 / 71

Proof: Bounding the TD Error

Substitute into the k-step TD update definition:

V̂t+1(s)− V (s) =
1

n

n∑
j=1

(
r
(j)
0 + γr

(j)
1 + · · ·+ γk−1r

(j)
k−1 + γkV̂t(s

(j)
k)

)
− V (s)

=

k−1∑
ℓ=0

γℓ

(
1

n

∑
j

r
(j)
ℓ − E[rℓ]

)
+ γk

(
1

n

∑
j

V̂t(s
(j)
k)− E[V (sk)]

)
Now upper bound the difference from E[rℓ] by ϵ:

V̂t+1(s)− V (s) ≤
k−1∑
ℓ=0

γℓϵ+ γk

(
1

n

∑
j

V̂t(s
(j)
k)− E[V (sk)]

)

≤ ϵ
1− γk

1− γ
+ γk

(
1

n

∑
j

V̂t(s
(j)
k)− E[V (sk)]

)
The second term is bounded by ∆γ

t−1 by assumption. Hence:

∆γ
t ≤ ϵ

1− γk

1− γ
+ γk ·∆γ

t−1

■ variance (increases with k) ■ bias (decreases with k)
29 / 71

Iterating the Recurrence

Substituting ϵ =
√

2 log(2k/δ)/n and iterating from
∆γ

0 = 1:

Full Learning Curve (Kearns & Singh)

∆γ
t ≤

1− γkt

1− γ

√
2 log(2k/δ)

n
+ γkt

Bias γkt: shrinks exponentially with k

Variance 1
1−γ

√
· · ·: irreducible error, grows with k

As t→∞: only variance floor remains

Optimal: start with large k, decrease over time.
0 200 400 600 800 1,000

0

50

100

150

200

k (multi-step horizon)

γk (bias coeff.)

1−γk

1−γ
(var. coeff.)

(γ = 0.995)

30 / 71

Why This Matters in Modern RL

The Kearns & Singh analysis reveals a fundamental tension:

Bias from bootstrapping is hard to control — depends on how wrong your value function is,
compounds through the Bellman backup chain
Variance from sampling is well-understood — can get more rollouts to handle it.

Consequence for LLM-Based RL (e.g., GRPO)
Some RL for LLMs uses Monte Carlo estimators (full rollouts) rather than TD:

Value function bias in high-dimensional LLM state spaces is extremely hard to diagnose or
bound
MC estimates are unbiased by construction — only error is variance
Generating full rollouts is relatively cheap vs. training an accurate critic (at least for short
horizons)

31 / 71

Discussion: MC vs. TD for LLM-Based RL

Quick Discussion:

Under what conditions might you want to switch from MC to TD with LLM+RL
tasks?

Recall currently many people are using tasks like basic math questions and the
horizon is until you output the answer.

What’s an example of a task where you might want to go back to TD?

Take 2–3 minutes to brainstorm with your neighbor.

32 / 71

Break - 10 minutes

Q-Learning, SARSA, and Expected SARSA

Action Values: Extending to Q

Everything we’ve done with V extends naturally to action value functions Q.
Definitions: For policy π and optimal:

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)Vπ(s
′) Q∗(s, a) = R(s, a) + γ

∑
s′

T (s′|s, a)V∗(s
′)

Bellman operators for Q:

(FπQ)(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)
∑
a′

π(a′|s′)Q(s′, a′)

(FQ)(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)max
a′

Q(s′, a′)

These are contractions — just like the V case:

∥FπQ− FπQ
′∥∞ ≤ γ∥Q−Q′∥∞ ∥FQ− FQ′∥∞ ≤ γ∥Q−Q′∥∞

So value iteration converges on Q: limk→∞ F k
πQ = Qπ and limk→∞ F kQ = Q∗.

35 / 71

From V to Q: Why Learn Q?

Problem: To extract a policy from V ∗, we need the model!

π∗(s) = argmax
a

[
R(s, a) + γ

∑
s′

T (s′|s, a)V ∗(s′)

]

Solution: Learn Q∗(s, a) instead — the policy comes for free:

π∗(s) = argmax
a

Q∗(s, a)

36 / 71

Key Definitions: On-Policy vs. Off-Policy

When learning from experience, we distinguish between two policies:

Behavior Policy µ (also called exploration policy)

The policy used to collect data (select actions during interaction).

Target Policy π

The policy we are trying to learn or evaluate.

On-Policy (µ = π)

Learn about the same policy
generating data
Must balance exploration/exploitation

Off-Policy (µ ̸= π)

Learn about a different policy
Can reuse old data, explore freely

37 / 71

SARSA: On-Policy TD Control

SARSA estimates Qπ — the Q-values of the current policy. Given transition (s, a, r, s′, a′)
where a′ ∼ π(·|s′):

SARSA Update

Q(s, a)← Q(s, a) + α
(
r + γQ(s′, a′)︸ ︷︷ ︸

TD target

−Q(s, a)
)

Name: State, Action, Reward, State, Action — the quintuple used in each update.
Properties:

On-policy: learns Qπ for the policy π that generated the data
Uses a single sample of the next action a′

Converges to Qπ under Robbins-Monro step sizes

38 / 71

Expected SARSA: Lower Variance, Off-Policy Capable

Idea: Instead of sampling a′, take the expectation over next actions.
Given transition (s, a, r, s′) and a policy π:

Expected SARSA Update
Q(s, a)← Q(s, a) + α

(
r + γ

∑
a′ π(a′|s′)Q(s′, a′)−Q(s, a)

)
Two key advantages over SARSA:

1. Lower variance: No randomness from sampling a′ — we average over all actions
2. Off-policy capable: π in the expectation can differ from the data-collecting policy

39 / 71

SARSA vs. Expected SARSA: Bias-Variance Analysis

Key result: SARSA and Expected SARSA have the same bias but Expected SARSA has lower
variance.
See Van Seijen, Harm, et al. “A theoretical and empirical analysis of Expected Sarsa.” ADPRL, 2009.
Blackboard proof.

40 / 71

Q-Learning: Learning Q∗ Directly

Q-Learning (Watkins, 1989): Learn Q∗ using the max over next actions. Given (s, a, r, s′) from any
behavior policy:

Q-Learning Update
Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)︸ ︷︷ ︸

TD target

−Q(s, a)
)

Key properties:

Off-policy: Learns Q∗ regardless of which policy collected the data
Uses the Bellman optimality equation (with max) not the expectation equation

41 / 71

Q-Learning: Complete Algorithm

Q-Learning with ϵ-Greedy Exploration
Initialize: Q(s, a) = 0 for all s ∈ S, a ∈ A
For each episode:

1. Initialize s

2. For each step:

Choose a via ϵ-greedy w.r.t. Q
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s′, a′)−Q(s, a)

]
s← s′

3. Until s is terminal

Convergence (Jaakkola et al., 1993; Tsitsiklis, 1994)
Converges to Q∗ if: (1) each (s, a) updated∞-often, (2)

∑
t αt =∞,

∑
t α

2
t <∞.

42 / 71

Q-Learning as Noisy Value Iteration

Key insight: Q-learning is a stochastic version of value iteration on Q-values.

Real-Time Value Iteration:

Qt+1(s, a)← (FQt)(s, a)

Computes the full expectation:

r(s, a) + γ
∑
s′

P a
ss′ max

a′
Qt(s

′, a′)

Q-Learning:

Qt+1(s, a)← Qt(s, a)

+ αt

[
r + γmax

a′
Qt(s

′, a′)︸ ︷︷ ︸
≈FQt

−Qt(s, a)
]

Uses a single transition instead.

Why the Step Size αt?
Without smoothing (α = 1), single-sample updates cause Q-values to chatter. The step
size averages out noise over many updates.

43 / 71

Comparing SARSA, Expected SARSA, and Q-Learning

SARSA Expected SARSA Q-Learning

Target r + γQ(s′, a′) r + γ
∑

a′ π(a
′|s′)Q(s′, a′) r + γmaxa′ Q(s′, a′)

On/Off-policy On-policy Either Off-policy
Learns Qπ Qπ Q∗

Variance Higher Lower Lower
Cliff Walking Example:
SARSA learns a safe path away from the cliff
(accounts for ϵ-exploration risk). Q-learning
learns the optimal path along the edge
(exploration off-policy).

Exploration
All use ϵ-greedy: with prob ϵ random action, else
argmaxa Q(s, a).

Cliff Walking (Gymnasium). Agent starts
bottom-left, goal bottom-right. Brown = cliff.

44 / 71

Deep Q-Networks (DQN)

The Challenge: Scaling Beyond Tabular

Problem: Tabular methods store one value per (s, a) pair. For Atari: s = raw pixels
(210× 160× 3) — the state space is astronomical.

Atari 2600: Breakout, Pong, Space Invaders. Raw pixels!

Solution: Use a neural network Qθ(s, a) to approximate Q∗.

The Loss Function

L(θ) = E
[(

Qθ(s, a)−
(
r + γmax

a′
Qθ(s

′, a′)
))2]

46 / 71

The Deadly Triad

Combining these three things can cause divergence:
1. Function approximation — neural net instead of table
2. Bootstrapping — target depends on current Q estimate
3. Off-policy learning — data from different policy than we’re evaluating

Sutton & Barto (2018, Ch. 11.10)

“The potential for off-policy learning remains tantalizing, the best way to achieve it
still a mystery.”

DQN (Mnih et al., 2015) introduced two key tricks to tame this instability:
Experience replay
Target networks

47 / 71

DQN and Neural Network Function Approximation

Problem: Consecutive transitions are highly correlated.
Discuss with your neighbor: Why is this a problem? What are the
consequences?

48 / 71

DQN Experience Replay

Problem: Consecutive transitions are highly correlated⇒ unstable SGD which
assumes i.i.d. data.
Solution: Store transitions in a replay buffer D and sample random mini-batches.

Experience Replay

1. Store each transition (s, a, r, s′) in buffer D (circular, fixed size)
2. Sample random mini-batch {(si, ai, ri, s′i)} ∼ D
3. Compute gradient on mini-batch and update θ

Benefits:
Breaks correlations: Random sampling decorrelates training data
Data efficiency: Each transition reused in multiple updates
Stability: Smooths over changes in data distribution as policy changes 49 / 71

DQN: Target Networks

Problem: The target r + γmaxa′ Qθ(s
′, a′) changes every time we update θ.

⇒We’re chasing a moving target — makes optimization unstable.
Solution: Use a separate target network Qθ− with frozen weights.

DQN Target

y = r + γmaxa′ Qθ−(s
′, a′). Update θ− ← θ every C steps, or soft:

θ− ← τθ + (1− τ)θ−.

The full DQN loss:

L(θ) = E(s,a,r,s′)∼D

[(
Qθ(s, a)−

(
r + γmax

a′
Qθ−(s

′, a′)

))2
]

50 / 71

DQN Pseudocode

Deep Q-Network Algorithm

Initialize: replay buffer D, Qθ with random weights, θ− ← θ
For each episode:

1. Initialize state s0 (stack of 4 frames)
2. For each step t:

Select at via ϵ-greedy w.r.t. Qθ

Execute at, observe rt, st+1

Store (st, at, rt, st+1) in D
Sample mini-batch {(si, ai, ri, s′i)} from D
Compute targets: yi = ri + γmaxa′ Qθ−(s′i, a

′)
Update θ by SGD on

∑
i(Qθ(si, ai)− yi)

2

Every C steps: θ− ← θ

51 / 71

DQN: Architecture and Results

Architecture:

Input: stack of 4 raw frames (pixels)
3 conv layers→ 2 FC layers
Output: Q(s, a) for all 18 actions
Reward: change in game score
Same architecture across all 49
games!

Key results (Mnih et al., 2015):

Superhuman on 29/49 Atari games
Learned from raw pixels
No game-specific tuning

52 / 71

Discussion: Limitations of DQN

Quick Discussion:

1. What sorts of problems do you think might still exist in DQN?

2. What sorts of improvements do you think we can make?

Take 2–3 minutes to brainstorm with your neighbor.

53 / 71

DQN Improvements: Toward Rainbow

Double DQN: Fixing Overestimation Bias

Problem: maxa′ Q(s′, a′) overestimates the true value because noise in Q gets
amplified by the max operator.
Double Q-Learning (van Hasselt, 2010): Decouple action selection from action
evaluation.

Double DQN Target (van Hasselt, Guez & Silver, 2016)

a∗ = argmax
a′

Qθ(s
′, a′) y = r + γQθ−(s

′, a∗)

Key idea: Use the online network Qθ to select the best action, but evaluate it
with the target network Qθ− . Different noise⇒ breaks overestimation.

55 / 71

Double Q-Learning: Full Algorithm

Double Q-Learning (van Hasselt, 2010)
Initialize: QA(s, a), QB(s, a) for all s, a; initial state s
Repeat:

1. Choose a based on QA(s, ·) and QB(s, ·); observe r, s′

2. Choose (e.g. random) either UPDATE(A) or UPDATE(B):

If UPDATE(A): a∗ = argmaxa′ QA(s′, a′)
QA(s, a)← QA(s, a) + α(s, a)

[
r + γQB(s′, a∗)−QA(s, a)

]
Else if UPDATE(B): b∗ = argmaxa′ QB(s′, a′)
QB(s, a)← QB(s, a) + α(s, a)

[
r + γQA(s′, b∗)−QB(s, a)

]
3. s← s′

Until end.

Action selection uses one network; action evaluation uses the other⇒ reduces
overestimation bias.

56 / 71

Prioritized Experience Replay

Problem: Uniform sampling from replay buffer wastes time on “easy” transitions.
Idea (Schaul et al., 2016): Sample transitions proportional to their TD error:

pi ∝ |δi|α where δi = ri + γmax
a′

Qθ−(s
′
i, a
′)−Qθ(si, ai)

Transitions where the agent is “most wrong” get replayed more often.
Importance sampling correction: To compensate for non-uniform sampling:

wi =

(
1

N · pi

)β

Anneal β → 1 over training to remove bias.

57 / 71

Double DQN with Proportional Prioritization

Algorithm: Double DQN with Proportional Prioritization (Schaul et al.,
2016)
Input: minibatch k, step-size η, replay period K, size N , exponents α, β, budget T
Initialize: replay memory H = ∅, ∆ = 0, p1 = 1. Observe s0, choose a0 ∼ πθ(s0).
For t = 1 to T :

1. Observe st, rt, γt
2. Store (st−1, at−1, rt, γt, st) in H with priority pt = maxi<t pi

3. If t ≡ 0 (mod K):

For j = 1 to k:
Sample transition j ∼ P (j) = pαj /

∑
i p

α
i

wj = (N · P (j))−β/maxi wi

δj = rj + γjQθ−(sj , a
∗)−Qθ(sj−1, aj−1), a∗ = argmaxa Qθ(sj , a)

pj ← |δj |; ∆← ∆+ wjδj ∇θQθ(sj−1, aj−1)

θ ← θ + η∆, ∆← 0; periodically θ− ← θ
4. Choose at ∼ πθ(st)

Combines Double DQN (reduces overestimation) with prioritized replay (sample by |δ|α,
correct with wj).

58 / 71

Dueling Networks

Observation: In many states, the value of being in the state matters more than which
action you take.

Dueling DQN (Wang et al., 2016): Decompose Q
into value and advantage:

Dueling Architecture

Qθ(s, a) = Vθ(s) +

(
Aθ(s, a)−

1

|A|
∑
a′

Aθ(s, a
′)

)

Vθ(s): how good is this state?
Aθ(s, a): how much better is a than average?

Top: standard DQN. Bottom: dueling
architecture with separate V and A streams.

(Wang et al., 2016)

59 / 71

Distributional DQN and Classification-Based Values

Idea: Standard DQN learns the mean return via MSE regression. Distributional RL
learns the full distribution (e.g. C51, QR-DQN). Stop Regressing (Farebrother et al.,
ICML 2024): train value functions via classification instead of regression.
Why classification? Discretize the value range into bins; use categorical cross-entropy
instead of MSE. More scalable, robust to noisy targets and non-stationarity, reduces
overfitting; SOTA on Atari, multi-task RL, robotics, and more.

Stop Regressing (Farebrother et al., 2024)
Discretize returns into K bins (atoms). Predict a distribution over bins pθ(· | s, a); Q(s, a) =

∑
k vk pθ(k | s, a).

Train with cross-entropy to the (projected) Bellman target. Variants: Two-Hot, HL-Gauss, categorical.

60 / 71

Training Value Functions via Classification

Algorithm: Classification-Based Value Learning (Farebrother et al.,
2024)
Require: number of bins K, bin support {v1, . . . , vK}
Input: transition (x, a, r, x′), discount γ ∈ [0, 1)

Compute distributional Bellman target:
Q(x′, a′) :=

∑
j vj pθ(j | x′, a′) (mean over predicted distribution)

a∗ ← argmaxa′ Q(x′, a′)
Target distribution: T zj := r + γ vj for atoms vj ; project onto bin support (e.g. Two-Hot over neighboring
bins)

Compute classification loss:
L = −

∑
j

targetj log pθ(j | x, a)

Minimize L (categorical cross-entropy) w.r.t. θ. Target is the projected Bellman target distribution.

Value learning becomes classification over bins; cross-entropy replaces MSE. Scales to
large networks and diverse domains (Atari, ResNets, Q-Transformers, chess, language
agents).

61 / 71

Rainbow: Combining All the Improvements

Rainbow (Hessel et al., 2018): Combine six DQN improvements:

1. Double DQN — reduce overestimation bias
2. Prioritized Replay — focus on surprising transitions
3. Dueling Networks — separate state value from action advantage
4. Multi-step Return Targets — Predict a few steps ahead.
5. Distributional RL — learn the full distribution of returns, not just the mean
6. Noisy Networks — learned exploration via stochastic network layers

(replaces ϵ-greedy)

62 / 71

Rainbow: Learning Curves

Rainbow achieves >200% median human-normalized score in 44M frames. (Hessel et al., 2018)
63 / 71

Rainbow: Detailed Results

Games achieving human performance thresholds. Top: Rainbow vs. baselines. Bottom: Ablations. (Hessel et al.,
2018)

64 / 71

Under-Reported Trick: Classification Instead of
Regression

Problem: MSE regression is unstable with noisy, non-stationary TD targets.
Solution: Discretize values into bins, predict a categorical distribution, use cross-entropy.

How It Works

1. Discretize [Vmin, Vmax] into m bins z1, . . . , zm

2. Network→ softmax→ probs p̂i over bins

3. Target: two-hot encoding (interpolate between neighboring
bins)

4. Cross-entropy loss; recover: Q =
∑

i p̂i · zi

Why it helps:

Handles noisy targets better
Scales to larger networks
Bounded gradients

Used in: C51, Rainbow, MuZero, R2D2, Agent57, scaled Atari/robotics.
Farebrother et al., “Stop Regressing: Training Value Functions via Classification,” 2024.

65 / 71

Policy-Based vs. Value-Based Methods

Policy-Based vs. Value-Based: A Preview

Value-Based (today)

Learn Q∗/V ∗, derive policy
E.g., Q-Learning, DQN
Pro: Low variance, sample efficient
Pro: Off-policy (replay buffers!)
Con: Discrete actions only
Con: Maximization bias

Policy-Based (next lecture)

Learn πθ directly
E.g., REINFORCE, PPO
Pro: Continuous actions
Pro: Unbiased gradients
Con: On-policy, high variance
Con: Less sample efficient

Actor-Critic Methods
The best of both worlds: learn both a policy (actor) and a value function (critic). Examples:
A2C, SAC, TD3. Next after policy gradients.

67 / 71

Summary

Summary: What We Covered Today

1. Async VI convergence: Contraction property guarantees convergence even
with partial updates

2. Model-free value learning: MC (unbiased, high var.) vs. TD (biased, low
var.), multi-step returns interpolate

3. SARSA / Expected SARSA / Q-Learning: Three TD control flavors differing
in target computation

4. DQN: Experience replay + target networks tame the deadly triad

5. Rainbow: Six complementary improvements⇒ massive gains

69 / 71

Key Takeaways

1. The Bellman equation is the backbone of value-based RL — from
tabular DP all the way to deep Q-networks.

2. Bias-variance tradeoff governs the choice between MC and TD
methods; multi-step returns give a tunable knob.

3. Q-learning enables model-free, off-policy learning of optimal policies.

4. Function approximation (neural nets) is essential for scaling — but
introduces instability that requires careful engineering (replay, target
nets, etc.).

70 / 71

Questions?

	Recap from Lecture 1
	Recap from Lecture 1
	Discussion: Speeding Up Value Iteration
	Convergence of Asynchronous Value Iteration
	From Planning to Learning
	Value Function Learning
	Bias-Variance Tradeoff: Kearns & Singh
	Break - 10 minutes
	Q-Learning, SARSA, and Expected SARSA
	Deep Q-Networks (DQN)
	DQN Improvements: Toward Rainbow
	Policy-Based vs. Value-Based Methods
	Summary
	Questions?

