Value-Based Reinforcement Learning
Lecture 2

Peter Henderson
COS 435/ ECE 433

Thanks to helpful slides/notes by Ben Van Roy, Emma Brunskill, Ben Eysenbach, and Csaba Szepesvari.

Today’s Agenda

NoGaRb =

Recap: Value Ilteration

Discussion: Speeding Up Value lteration
Convergence of Asynchronous Value lteration
Value Function Learning (Model-Free)
Bias-Variance Tradeoff in Multi-Step Backups
Q-Learning, SARSA, Expected SARSA

Deep Q-Networks (DQN) and Rainbow

2/7

Recap from Lecture 1

Logistics

Starting next week: submit reading responses.

Question about format:

1. One paragraph summary with one criticism
and one observation per required paper.

2. A marked up pdf with your thoughts.

4/71

Recap from Lecture 1

Recap: The MDP Framework

An MDP is a tuple (S, A, T, R,~):
B S: State space .A: Action space
B 7(s'|s,a): Transition dynamics R(s,a): Reward function
B + € [0,1): Discount factor

Key Value Functions

W V™(s) =Ex D041 | s0o =s] — “How good is state s ?”
W Q" (s,a) =E; [0 V're41 | so =s,a0 =a] — “How good is action a in
state s ?”

Relationship: V7 (s) = > 7(a|s)Q™ (s, a) Optimal: 7*(s) = argmax, Q*(s, a)

6/71

Recap: Bellman Equations

Value functions satisfy a recursive relationship: Value now = Immediate reward +
Discounted future value

Bellman Expectation Equation (for policy)
V7(s) = > _gm(als) [R(s,a) + 72 5 T(s']s,a)V7(s")]

Bellman Optimality Operator 5 : RISl — RIS
(BV)(s) = maxeea [R(s,a) +7 3, T(s'|s,a)V (s')]

7/71

Recap: Value lteration

Value lteration Algorithm

Initialize: V;(s) =0 for all s
For £ =0,1,2,... until convergence (||Vi+1 — Vklloo < €):
For each state s:

Vit1(s) = max, [R(s,a) +v Yo T(8'|s, a)Vi(s')]

In operator notation: V., = BV},
Extract policy: 7(s) = argmax, [R(s,a) + 7>, T(5'|s,a)V (s)]

8/71

Recap: Contraction and Convergence

Theorem (Contraction Mapping)
1BV — BV'||oo <A|IV = V|| forall V,V’ € RISI

Theorem (Convergence of Value lteration)

The sequence Vy, Vi, ... with Vi, = BV}, converges to V*:
[V* = Villoo < A*IV* = Volloo — 0

Convergence rate is geometric: error shrinks by factor ~ per iteration.

9/71

Discussion: Speeding Up Value lteration

Discussion: Speeding Up Value lteration

Turn to your neighbor and discuss/recall:

What strategies can we use to speed up convergence of value iteration?

Take 3—4 minutes to brainstorm with your neighbor.

11/7

Strategies for Speeding Up Value lteration

1. Gauss-Seidel VI: Update states in order, use new values immediately.
B When computing V (s;), use already-updated V (s1),...,V (s;_1)
B Information propagates within a single sweep — often converges faster
2. Asynchronous VI: Update states in any order, even in parallel.
B Each processor updates its own subset of states
B Converges as long as every state is updated infinitely often
3. Prioritized Sweeping: Focus updates on states with the largest Bellman error.
B Maintain a priority queue ordered by |V (s) — (BV)(s)|
B Focus computation where it matters most

12/71

Convergence of Asynchronous Value Iteration

Discussion: Proving Asynchronous Convergence

Turn to your neighbor and discuss:

Under what conditions does asynchronous value iteration converge? Under what
conditions does it not?

Take 2-3 minutes to brainstorm with your neighbor.

14/71

Asynchronous Value lteration

Theorem (Asynchronous Convergence)

Fix a finite MDP (S, A, T, R) and v € [0, 1). If Sy, Sy, . . . is a sequence of subsets of S such
that each state s € S appears infinitely often, then for any V4:

_ (BVk)(s) S € Sk
oAl = {vk<s> 5 ¢ i

converges to V*.

The contraction property plus visiting all states infinitely often does the heavy lifting —
even partial updates make progress toward V*.

15/71

Proof of Asynchronous Convergence

Proof: Define ex, = ||V* — Vi||sc. We show e, — 0.
For any updated state s € Sy:

[V7(s) = Vira(s)] = [(BV7)(s) = (BVi)(s)| ANV = Villoo = vex

For non-updated states s ¢ Si: |[V*(s) — Vex1(8)| = |V (s) — Vi(s)] < ex.
So ex41 < e, (error never increases). But we need it to strictly decrease.
Since each state appears infinitely often, for any s there exists ks > k with s € Sk, :

[V*(s) = Vi1 (s)| < vew, < vex

After a “full cycle” where every state has been updated at least once, the max error contracts by at
least v. Repeating: e — 0. d

16/71

Async Value Propagation: First Wave

Setup: 4 x4 grid, deterministic. Goal
(3,3) = 410, v = 0.9. All other values start at 0.

Before After Step 1 Step 1: Update (2, 3) and (3,2) — the goal’s

3 0 . 3 neighbors:
2 0 2 V(2,3) =~-V(3,3)
= =0.9x10=
. . =09x10=9
ol o 0 Similarly V'(3,2) = 9.
Crucially: These fresh values are available
0 1 2 3 0 1 2 3

immediately for the next update — we don’t wait
for a full sweep to finish.

17/71

Async Value Propagation: Values Continue to Back Up

Step 2: Update the next ring — (1, 3), (2, 2),
3,1):
After Step 1 After Step 2 ®1)

V(1,3)=v-V(2,3)=09x9=8.1
The 9 came from Step 1 — not the old value of 0.

Connector effect: (2,3) and (3,2) act as
connectors — once they receive value from the
goal, they immediately relay it deeper into the grid.

Intuition/Analogy: Ripples

In async VI, you can have different “ripples”
connect if you do infinite passes leading to
convergence.

18/71

From Planning to Learning

From Planning to Learning

So far: Dynamic programming — assumes
known T and R. But in most real RL problems, we
don’t know the dynamics or reward!

Key Question

How do we compute value functions and policies from
data, without a model?

Two big ideas:

1. Value function learning: Estimate V™ or Q™ from
trajectories

2. Control without a model: Find Q* from
interaction data

Sty Tt at

Env

The agent-environment loop: learn
from interaction, not a model.

20/71

Value Function Learning

Monte Carlo Estimation of Value Functions

Goal: Given trajectories from policy =, estimate V7 (s).
Idea: For each state s visited, compute the actual return that followed, then average.
Given trajectory T = (so,70,51,71,...): Gy =Y pop Yeriir

Monte Carlo Update (First-Visit)
For each first visit to state s in an episode with observed return G;:
V(St) <]E[Gt]

Properties: Unbiased estimate of V™, but high variance — requires many full episodes.

22/71

Temporal Difference (TD) Learning

Key insight: We don’t need to wait for the end of an episode! Use the Bellman equation
to bootstrap: update predictions with predictions.

TD(0) Update
After observing transition (s, a,r,s'): V(s) « V(s) + a(r +V (s —V(s))

TD target

The quantity § = » + 4V (s") — V(s) is the TD error.

23/71

MC vs. TD: Bias-Variance Tradeoff

Monte Carlo TD(0)
B Target: Gy = ry +yrep1 + 2o + -0 B Target: r + vV (s')
B Unbiased estimate of V™ (s) B Biased: bootstraps off current V/
B High variance: many stochastic terms B Lower variance: one reward, one
B Requires complete episodes transition

B Can update every step

The Fundamental Tradeoff

MC uses long rollouts (low bias, high variance). TD uses short bootstraps (higher bias,
lower variance). Neither is universally better — best choice depends on the problem.

24/71

Multi-Step Returns: Interpolating MC and TD

We can use n-step returns to smoothly interpolate:

ng) =ri g+ Y g1 YV (St4n)

n Method

1 TD(0) — one reward + bootstrap
k k-step TD — k rewards + bootstrap
oo Monte Carlo — all rewards, no bootstrap

n
n
n

n-step TD Update
V(ss) < V(s)) +a (G —V(sy)

Larger n: less bias, more variance. Smaller n: more bias, less variance.
25/71

Bias-Variance Tradeoff: Kearns & Singh

Formalizing the Bias-Variance Tradeoff

To prove the bound, Kearns & Singh analyze a clean “phased” version of TD(k):
In each phase ¢, for every state s:
1. Collect n independent trajectories of length k from s under =
2. Each trajectory i produces random rewards r{, %, ..., ri_, with v € [—1,1]
3. Update by averaging over all n trajectories:

n

- 1 i i 1 & g
Viqa(s) = EZ {TOJF'YTlJF"'JF'Yk 1Tk_1+'yk‘/z£(5k)

k random rewards (each € [—1, 1]) bootstrap

Meanwhile, the true value decomposes as:
V™(s) = Elro] + yE[r1] + -+ 7" 'Elrx_1] + v*E[V"(sx)]

The update averages = ", ~*r} at each step ¢ — these are sample means of bounded,
independent random variables concentrating around E[r,]. This lets us use a common trick in RL
theory literature: Hoeffding’s inequality.

27171

Applying Hoeffding’s Inequality

(J)

Since each r,”’ € [-1,1], Hoeffding guarantees for each reward step ¢:

5,22
(Zré — E[r¢] _e) < 2exp(nZnQ;)

Solving for e: Fix the probablllty of exceeding e to be < é:

_ 2 _ 2
Qexp(ne >=5 = ¢ =log(6/2) = e= 21%(2/5)
So by Hoeffding, with n samples and prob. > 1 — §:
‘ Z’r‘]E[TZ — 21%(2/5)

Union bound over & steps: We need all k reward terms estimated to e accuracy simultaneously.
Require each to hold with prob. §/k, so the probability we fail on any term is < §:

2log(2k/9)

28/71

Proof: Bounding the TD Error

Substitute into the k-step TD update definition:

. 1 & . . _ . R .
Viga () = V(s) = =37 (rf” +ari 44571 95 s)) - V(o)
j=1

k—1
= S (3 X i) 4o (5 S) - B
=0 "7 o

Now upper bound the difference from E[r,] by e:
k—1

1 . .
Satert(y S el - BV (1))
‘ 11‘_ (3 S0l ~ BV (o))

The second term is bounded by A7, by assumption. Hence:

IN

Viti(s) = V(s)

IN

M variance (increases with k) M bias (decreases with &) 0071

Iterating the Recurrence

Substituting e = /21og(2k/4) /n and iterating from
Ay =1

Full Learning Curve (Kearns & Singh)

_ Lkt
Ay < L0 [21om@R/B) |
1 —v n

B Bias +"": shrinks exponentially with &
. 1 _.) .
M Variance ﬁ‘/' -+ irreducible error, grows with k

IA

B Ast — oo: only variance floor remains

Optimal: start with large &, decrease over time.

200 5

~k (bias coeff.)

k
—— =9 (var. coeff)

150 -+ =5

50 7

0 200 4OQ 600 . 800 1,000
k (multi-step horizon)

(v = 0.995)

30/71

Why This Matters in Modern RL

The Kearns & Singh analysis reveals a fundamental tension:
B Bias from bootstrapping is hard to control — depends on how wrong your value function is,
compounds through the Bellman backup chain
B Variance from sampling is well-understood — can get more rollouts to handle it.

Consequence for LLM-Based RL (e.g., GRPO)

Some RL for LLMs uses Monte Carlo estimators (full rollouts) rather than TD:

B Value function bias in high-dimensional LLM state spaces is extremely hard to diagnose or
bound

B MC estimates are unbiased by construction — only error is variance

B Generating full rollouts is relatively cheap vs. training an accurate critic (at least for short
horizons)

31/71

Discussion: MC vs. TD for LLM-Based RL

Quick Discussion:

Under what conditions might you want to switch from MC to TD with LLM+RL
tasks?

Recall currently many people are using tasks like basic math questions and the
horizon is until you output the answer.

What’s an example of a task where you might want to go back to TD?
Take 2—-3 minutes to brainstorm with your neighbor.

32/71

Break - 10 minutes

Q-Learning, SARSA, and Expected SARSA

Action Values: Extending to @

Everything we’ve done with V' extends naturally to action value functions Q.
Definitions: For policy = and optimal:

Qnls,a) = R(s,a) + 7Y _T(s'[s,a) Val(s) Qu(s,a) = R(s,a) +7) T(s'|s,a) Vi(s)

Bellman operators for Q:

s’ a’

(FQ)(s,a) = R(s,a) + vy _T(s'|s,a) max Q(s', a’)

These are contractions — just like the V' case:
[1FrQ = FrQlloc <7Q = Qe [[FQ—FQ[loc <7[1Q — Q'lloo

So value iteration converges on Q: limy ., F*Q = Q. and limy_,o, F*Q = Q..

35/71

From VV to Q: Why Learn ?

Problem: To extract a policy from V*, we need the model!

7 (s) = argmax | R(s,a) + 'yZT(S’]s,a)V*(s’)
a s

Solution: Learn Q*(s, a) instead — the policy comes for free:

7 (s) = argmax Q*(s, a)

36/71

Key Definitions: On-Policy vs. Off-Policy

When learning from experience, we distinguish between two policies:

Behavior Policy /. (also called exploration policy)
The policy used to collect data (select actions during interaction).

Target Policy 7

The policy we are trying to learn or evaluate.

On-Policy (1 = 7) Off-Policy (u #)
M Learn about the same policy B Learn about a different policy
generating data M Can reuse old data, explore freely

B Must balance exploration/exploitation
37/71

SARSA: On-Policy TD Control

SARSA estimates Q™ — the Q-values of the current policy. Given transition (s, a,r, s’,a’)
where o’ ~ m(-|s):

SARSA Update

Qs,0) < Q(s,0) + a1 +19Q(s, @) ~Q(s,0))

TD target

Name: State, Action, Reward, State, Action — the quintuple used in each update.
Properties:

B On-policy: learns Q™ for the policy 7 that generated the data

B Uses a single sample of the next action o’

B Converges to Q™ under Robbins-Monro step sizes

38/71

Expected SARSA: Lower Variance, Off-Policy Capable

Idea: Instead of sampling o', take the expectation over next actions.
Given transition (s, a,r, s’) and a policy =:

Expected SARSA Update
Qs,0) « Q(s,0) + a1 +7 L, 7(a'|s)Q(s', @) - Q(s,)

Two key advantages over SARSA:

1. Lower variance: No randomness from sampling «’ — we average over all actions
2. Off-policy capable: = in the expectation can differ from the data-collecting policy

39/71

SARSA vs. Expected SARSA: Bias-Variance Analysis

Key result: SARSA and Expected SARSA have the same bias but Expected SARSA has lower
variance.

See Van Seijen, Harm, et al. “A theoretical and empirical analysis of Expected Sarsa.” ADPRL, 2009.
Blackboard proof.

40/71

Q-Learning: Learning Q* Directly

Q-Learning (Watkins, 1989): Learn Q* using the max over next actions. Given (s, a,r, s") from any
behavior policy:

Q-Learning Update
Qs,0) < Q(s,a) + a7 + Y max Q(s', @) ~Q(s,0))

TD target

Key properties:

B Off-policy: Learns Q* regardless of which policy collected the data
B Uses the Bellman optimality equation (with max) not the expectation equation

41/ 71

Q-Learning: Complete Algorithm

Q-Learning with «-Greedy Exploration
Initialize: Q(s,a) =0foralls € S,a e A
For each episode:
1. Initialize s
2. For each step:
B Choose a via e-greedy w.r.t. Q
B Take action a, observe r, s’
B Q(s,a) + Q(s,a) + a[r + ymaxy Q(s',a') — Q(s,a)]
W s+ s
3. Until s is terminal

Convergence (Jaakkola et al., 1993; Tsitsiklis, 1994)

Converges to Q* if: (1) each (s, a) updated oco-often, (2) 3=, ar = o0, >, a2 < oo.

42/ 71

Q-Learning as Noisy Value lteration

Key insight: Q-learning is a stochastic version of value iteration on Q-values.
Real-Time Value Iteration: Q-Learning:

QtJrl(sva) A (FQt)(sva) Qt+1(s7a) — Qt(sva)

/ /
Computes the full expectation: onlr+y max Qu(s', a') = (s, a)]

(s,a +’yZPs , math s’ a) REQe
Uses a single transition instead.

Without smoothing (« = 1), single-sample updates cause Q-values to chatter. The step
size averages out noise over many updates.

43/ 71

Comparing SARSA, Expected SARSA, and Q-Learning

SARSA Expected SARSA Q-Learning
Target T+9Q(sd) T+, w(d]s)Q(s)a’) 7+ ymaxe Q(s',a’)
On/Off-policy On-policy Either Off-policy
Learns Q" Q" Q"
Variance Higher Lower Lower

Cliff Walking Example:

SARSA learns a safe path away from the cliff
(accounts for e-exploration risk). Q-learning
learns the optimal path along the edge
(exploration off-policy).

Exploration

All use e-greedy: with prob e random action, else
arg max, Q(s, a).

Cliff Walking (Gymnasium). Agent starts
bottom-left, goal bottom-right. Brown = cliff.

44 /71

Deep Q-Networks (DQN)

The Challenge: Scaling Beyond Tabular

Problem: Tabular methods store one value per (s, a) pair. For Atari: s = raw pixels
(210 x 160 x 3) — the state space is astronomical.

=i

)
Atari 2600: Breakout, Pong, Space Invaders. Raw pixels!

Solution: Use a neural network Qy(s, a) to approximate Q*.

The Loss Function

£O) =E [(Qo(s,@ = (r+ vn;@XQe@'v“')))Q]

46 /71

The Deadly Triad

Combining these three things can cause divergence:

1. Function approximation — neural net instead of table
2. Bootstrapping — target depends on current Q estimate
3. Off-policy learning — data from different policy than we'’re evaluating

“The potential for off-policy learning remains tantalizing, the best way to achieve it
still a mystery.”

DQN (Mnih et al., 2015) introduced two key tricks to tame this instability:
M Experience replay

B Target networks
47 /71

DQN and Neural Network Function Approximation

Problem: Consecutive transitions are highly correlated.
Discuss with your neighbor: Why is this a problem? What are the
consequences?

48/ 71

DQN Experience Replay

Problem: Consecutive transitions are highly correlated = unstable SGD which
assumes i.i.d. data.
Solution: Store transitions in a replay buffer D and sample random mini-batches.

Experience Replay

1. Store each transition (s, a,r, s") in buffer D (circular, fixed size)
2. Sample random mini-batch {(s;, a;, 7, s;)} ~ D
3. Compute gradient on mini-batch and update ¢

Benefits:
B Breaks correlations: Random sampling decorrelates training data
B Data efficiency: Each transition reused in multiple updates
B Stability: Smooths over changes in data distribution as policy changes 971

DQN: Target Networks

Problem: The target + v max, Qy(s’, a’) changes every time we update 6.
= We’re chasing a moving target — makes optimization unstable.

Solution: Use a separate target network Q- with frozen weights.

DQN Target

y =1+ ymaxy Qg-(s',a"). Update 6~ «+ 6 every C steps, or soft:
0~ 710+ (1—7)0".

The full DQN loss:
2
‘C(G) = E(s,a,r,s’)ND [<Q9(57 a) - (T + HZE}X QG* (3/7 CL,)))]

50/71

DQN Pseudocode

Deep Q-Network Algorithm

Initialize: replay buffer D, Qg with random weights, 6= < 6
For each episode:

1. Initialize state s, (stack of 4 frames)
2. For each step t:

B Select a, via e-greedy w.r.t. Qq

B Execute a;, observe 1, s:11

W Store (St, ag, T, 8t+1) in D

B Sample mini-batch {(s;, a;, r;, s;)} from D

B Compute targets: y; = r; + ymax, Qy- (s}, a’)
| Update 0 by SGD on Zi(QQ(Si, ai) — yz)2

B Every C steps: 6= < 6

51/71

DQN: Architecture and Results

Architecture: Key results (Mnih et al., 2015):
B Input: stack of 4 raw frames (pixels) B Superhuman on 29/49 Atari games
M 3 conv layers — 2 FC layers M Learned from raw pixels
B Output: Q(s,a) for all 18 actions B No game-specific tuning

B Reward: change in game score

B Same architecture across all 49
games!

52/71

Discussion: Limitations of DQN

Quick Discussion:
1. What sorts of problems do you think might still exist in DQN?

2. What sorts of improvements do you think we can make?

Take 2-3 minutes to brainstorm with your neighbor.

53/71

DQN Improvements: Toward Rainbow

Double DQN: Fixing Overestimation Bias

Problem: max, Q(s',a’) overestimates the true value because noise in @ gets
amplified by the max operator.

Double Q-Learning (van Hasselt, 2010): Decouple action selection from action
evaluation.

Double DQN Target (van Hasselt, Guez & Silver, 2016)

a* = argmax Qy(s’, a’) y=r—+7Qy-(s,a")

a/

Key idea: Use the online network @)y to select the best action, but evaluate it
with the target network Q,-. Different noise = breaks overestimation.

55/71

Double Q-Learning: Full Algorithm

Double Q-Learning (van Hasselt, 2010)

Initialize: Q4 (s,a), QB (s, a) for all s, a; initial state s
Repeat:
1. Choose a based on Q“ (s, -) and QZ (s, -); observe r, s’
2. Choose (e.g. random) either UPDATE(A) or UPDATE(B):
B If UPDATE(A): a* = arg max,, Q4(s,a’)
Q% (s,a) + Q%4(s,a) + a(s,a) [r +1Q"(s',a*) — Q% (s, a)]
B Else if UPDATE(B): b* = argmax,, QF(s,a’)
b

3. s« s
Until end.

Action selection uses one network; action evaluation uses the other = reduces
overestimation bias.

56/71

Prioritized Experience Replay

Problem: Uniform sampling from replay buffer wastes time on “easy” transitions.

Idea (Schaul et al., 2016): Sample transitions proportional to their TD error:

pi < |6;] where §; = 7; +ymax Qg (s}, a") — Qp(si, ai)
a

Transitions where the agent is “most wrong” get replayed more often.
Importance sampling correction: To compensate for non-uniform sampling:

1 B
w; =
’ N -p;

Anneal 5 — 1 over training to remove bias.

57 /71

Double DQN with Proportional Prioritization

Algorithm: Double DQN with Proportional Prioritization (Schaul et al.,

2016)

Input: minibatch &, step-size 7, replay period K, size N, exponents «, 3, budget T’
Initialize: replay memory H = 0, A = 0, p1 = 1. Observe sq, choose ag ~ 7g(so).
Fort=1to T:

1. Observe s¢, r¢, vt
2. Store (s¢—1,at—1,7¢,7t, s¢) in H with priority p; = max;<¢ p;

3. ft=0 (mod K):
W For j =1to k:
m Sample transition j ~ P(j) = p5/ >, p§
B w; = (N-P(j))?/ max; w;
B 5 =1+ 7Qp-(s5,a") — Qo(sj-1,a;-1), a* = argmax, Qo(s;, a)
H p; |5]|, A(—A+Wj6j VgQg(sj_l,aj_1)
W 0« 0+ nA, A<+ 0;periodically 6= + 0

4. Choose a; ~ mg(st)
58/71

Dueling Networks

Observation: In many states, the value of being in the state matters more than which
action you take.

Dueling DQN (Wang et al., 2016): Decompose @
into value and advantage:

Dueling Architecture) et v

Dueling Q network
Q) = V(o) + () - [s

Qo(s,a) = Vy(s) + (Ag(s,a) = ﬁ ZAQ(&Q’))

Top: standard DQN. Bottom: dueling
architecture with separate V and A streams.
B V,(s): how good is this state? (Wang et al., 2016)

B Ay(s,a): how much better is a than average?

59/71

Distributional DQN and Classification-Based Values

Idea: Standard DQN learns the mean return via MSE regression. Distributional RL
learns the full distribution (e.g. C51, QR-DQN). Stop Regressing (Farebrother et al.,
ICML 2024): train value functions via classification instead of regression.

Why classification? Discretize the value range into bins; use categorical cross-entropy
instead of MSE. More scalable, robust to noisy targets and non-stationarity, reduces
overfitting; SOTA on Atari, multi-task RL, robotics, and more.

Stop Regressing (Farebrother et al., 2024)

Discretize returns into K bins (atoms). Predict a distribution over bins pg (- | s,a); Q(s,a) = >, vk pe(k | s, a).
Train with cross-entropy to the (projected) Bellman target. Variants: Two-Hot, HL-Gauss, categorical.

60/71

Training Value Functions via Classification

Algorithm: Classification-Based Value Learning (Farebrother et al.,

2024)

Require: number of bins K, bin support {v1,...,vk}
Input: transition (z, a, r, z’), discount v € [0, 1)
Compute distributional Bellman target:

B Q(,d) = > vipe(i| z’,a’) (mean over predicted distribution)

B o* « argmax, Q(z/,a’)

B Target distribution: 7z; := r + v v; for atoms v;; project onto bin support (e.g. Two-Hot over neighboring

bins)
Compute classification loss:
L=— Ztargetj logpe(j | x,a)
J

Minimize L (categorical cross-entropy) w.r.t. 6. Target is the projected Bellman target distribution.

Value learning becomes classification over bins; cross-entropy replaces MSE. Scales to
large networks and diverse domains (Atari, ResNets, Q-Transformers, chess, language

3\

61/71

Rainbow: Combining All the Improvements

Rainbow (Hessel et al., 2018): Combine six DQN improvements:

1.

Double DQN — reduce overestimation bias

2. Prioritized Replay — focus on surprising transitions

AU

Dueling Networks — separate state value from action advantage
Multi-step Return Targets — Predict a few steps ahead.
Distributional RL — learn the full distribution of returns, not just the mean

Noisy Networks — learned exploration via stochastic network layers
(replaces e-greedy)

62/ 71

Rainbow: Learning Curves

DON

DDQN

Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN
Noisy DQN
Rainbow

N
o
<

2
5
]
-
]
g
s
£
5
2
<
5
£
5
2
c
§
2
]
2

Millions of frames

Rainbow achieves >200% median human-normalized score in 44M frames. (Hessel et al., 2018)
63 /71

Rainbow: Detailed Results

#games > 100% human #games > 200% human #games > 500% human
N
— ooon
Priorit
ling DDQN
o

oDON

tributional DQN
N

oan
o double
- nopriority
no dueling
o multi-step
tribution

50 100 150
Millions of frames

50
il

150 0 50

Milion:

100 150 200
f frames.

50
Mill

100 150

of frames

100 150 200 O 200

100
f

Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

Games achieving human performance thresholds. Top: Rainbow vs. baselines. Bottom: Ablations
2018)

. (Hessel et al.,

64 /71

Under-Reported Trick: Classification Instead of
Regression

Problem: MSE regression is unstable with noisy, non-stationary TD targets.
Solution: Discretize values into bins, predict a categorical distribution, use cross-entropy.

Why it helps:
CEETO = coies noisy targers better
B Scales to larger networks

1. Discretize [Vinin, Vinax] into m bins z1,...,zm
M Bounded gradients

2. Network — softmax — probs p; over bins

3. Target: two-hot encoding (interpolate between neighboring
bins)
4. Cross-entropy loss; recover: Q = > p; - 2;

Used in: C51, Rainbow, MuZero, R2D2, Agent57, scaled Atari/robotics.
Farebrother et al., “Stop Regressing: Training Value Functions via Classification,” 2024.

65/71

Policy-Based vs. Value-Based Methods

Policy-Based vs. Value-Based: A Preview

Value-Based (today) Policy-Based (next lecture)
B Learn Q*/V*, derive policy B Learn 7y directly
M E.g., Q-Learning, DQN M E.g., REINFORCE, PPO
B Pro: Low variance, sample efficient B Pro: Continuous actions
B Pro: Off-policy (replay buffers!) B Pro: Unbiased gradients
B Con: Discrete actions only B Con: On-policy, high variance
B Con: Maximization bias B Con: Less sample efficient

Actor-Critic Methods

The best of both worlds: learn both a policy (actor) and a value function (critic). Examples:
A2C, SAC, TD3. Next after policy gradients.

67 /71

Summary

Summary: What We Covered Today

1. Async VI convergence: Contraction property guarantees convergence even
with partial updates

2. Model-free value learning: MC (unbiased, high var.) vs. TD (biased, low
var.), multi-step returns interpolate

3. SARSA / Expected SARSA / Q-Learning: Three TD control flavors differing
in target computation

4. DQN: Experience replay + target networks tame the deadly triad
5. Rainbow: Six complementary improvements = massive gains

69 /71

Key Takeaways

1. The Bellman equation is the backbone of value-based RL — from
tabular DP all the way to deep Q-networks.

2. Bias-variance tradeoff governs the choice between MC and TD
methods; multi-step returns give a tunable knob.

3. Q-learning enables model-free, off-policy learning of optimal policies.

4. Function approximation (neural nets) is essential for scaling — but
introduces instability that requires careful engineering (replay, target
nets, etc.).

70/ 71

Questions?

	Recap from Lecture 1
	Recap from Lecture 1
	Discussion: Speeding Up Value Iteration
	Convergence of Asynchronous Value Iteration
	From Planning to Learning
	Value Function Learning
	Bias-Variance Tradeoff: Kearns & Singh
	Break - 10 minutes
	Q-Learning, SARSA, and Expected SARSA
	Deep Q-Networks (DQN)
	DQN Improvements: Toward Rainbow
	Policy-Based vs. Value-Based Methods
	Summary
	Questions?

