Reinforcement Learning: From Foundations to
Frontiers

Peter Henderson

February 6, 2026

ii | PETER HENDERSON

These lecture notes are a work in progress and may contain errors,
typos, or incomplete sections.

If you find any mistakes or have suggestions for improvement, please
open an issue on the course repository.

Last updated: February 6, 2026

Contents

Preface 1
Notation 2
1 Introduction to Reinforcement Learning 3
1.1 The Reinforcement Learning Problem 3
1.2 Markov Decision Processes 14
1.3 Valuelteration 21
14 Policy Iteration. L. 31

0 Preface \ 1

Preface

There are many different excellent resources for reinforcement learning. To
name a few:

e Reinforcement Learning: An Introduction by Richard S. Sutton and
Andrew G. Barto.

e Reinforcement Learning: Bit by Bit by Xiuyuan Lu, Benjamin Van
Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, and Zheng
Wen.

e Bandit Algorithms by Tor Lattimore and Csaba Szepesviri (if you're
interested in bandits).

e Algorithms for Reinforcement Learning by Csaba Szepesvari.

e Mathematical Foundations of Reinforcement Learning by Shiyu
Zhao.

Now, there remains the question of why create a new set of notes on the
matter? To my mind, each of these resources covers a distinct view of rein-
forcement learning. The Sutton and Barto view doesn’t quite capture the Lu
et al. view, for example. And all of them are geared toward a world where
we spend significant time on tabular methods. We don't live in that world
anymore. The future is function approximation with deep neural networks.
And reinforcement learning, to my mind, is a path toward artificial general
intelligence.! Others might disagree with me, but this book is my attempt to
ramp up someone in one semester, from scratch, to engage with the frontiers
of reinforcement learning research, with an emphasis on areas that I think
will be important in the next decade.

Acknowledgements. Much of these notes draw inspiration from lecture
notes and course materials by Ben Eysenbach, Ben Van Roy, Emma Brunskill,
Doina Precup, and David Silver. I am grateful to them for making their
excellent teaching resources available to the community.

"Here I mean “general” in the sense of learning and adaptation: an agent’s ability to achieve
goals across any tractable environment by efficiently acquiring and using experience, rather
than being preloaded with solutions to many fixed tasks.

2 | PETER HENDERSON

Notation
Symbol Meaning
S state space
A action space
m(als) policy
T(s'|s,a) transition function
R(s,a) expected immediate reward
y discount factor
V7(s) state value under =
Q7 (s,a) action value under 7
Ot TD error
r4(0) PPO probability ratio
KL(p|\q) Kullback-Leibler divergence

Chapter 1

Introduction to Reinforcement
Learning

1.1 The Reinforcement Learning Problem

Why are you reading these notes? It could be because you receive some
reward from it: you get some positive feedback in the brain from satisfying
curiosity. Or perhaps the reward isn’t the satisfaction of learning, but opti-
mizing for some future payoff: learning about RL might lead to a high-paying
job and the additional rewards that come with that.

The field of reinforcement learning in computer science is all about agents
that optimize for reward while interacting with the world. But it is an inter-
disciplinary field at its heart, drawing on optimization theory, mathematics,
and neuroscience. Now, some might quarrel with a big, broad definition
of RL. But that’s the reality of the field, and my own personal preference
for how to define it. I'm not one to care about how we define the contours
of a field, but rather what we can do with research within its orbit. So, for
now, think of reinforcement learning as subsuming how we can make agents
learn from experience and interact with the world for some goal or purpose.

4 | PETER HENDERSON

1.1.1 What is Reinforcement Learning?

Before diving into the mathematics, let us consider several definitions from
influential researchers.

Kaelbling et al. (1996) define reinforcement learning as “the problem faced
by an agent that learns behavior through trial-and-error interactions with a
dynamic environment.” Sutton and Barto (2018) emphasize that RL is “more
focused on goal-directed learning from interaction than are other approaches
to machine learning.” More recently, Van Roy (2024) has described the
subject as addressing “the design of agents that learn to achieve specified
goals.”

What unites these definitions is the emphasis on learning from interaction to
achieve goals. Unlike supervised learning, where we have labeled examples
of correct behavior, in RL the agent must discover good behavior through
trial and error, guided only by a reward signal.

1.1.2 A Brief History of Reinforcement Learning

Modern reinforcement learning weaves together several historical threads.
Understanding this history helps us appreciate why RL is formulated the
way it is and where the key ideas came from.

Psychology One of the main fields inspiring much of early reinforcement
learning research is psychology. Edward Thorndike formulated the “Law of
Effect” in late 19th and early 20th century through puzzle-box experiments
with cats (Thorndike, 1911). He observed that responses producing a satis-
tying effect become more likely to recur, while those producing discomfort
become less likely. This simple principle—that behavior is shaped by its
consequences—lies at the heart of reinforcement learning.

B.F. Skinner extended these ideas in the 1930s through what he called
operant conditioning (Skinner, 1938). He developed the “Skinner box,” an
apparatus containing buttons (actions), lights and speakers (observations),
and mechanisms for delivering food or mild shocks (rewards). Skinner’s
work demonstrated that complex behaviors could be shaped through careful
manipulation of reinforcement schedules. He even wrote a novel, Walden Two

1.1 The Reinforcement Learning Problem ‘ 5

Computer Science

Engineering Neuroscience

Bounded|

Rationality, Psychology

Figure 1.1: Reinforcement learning is inherently interdisciplinary, drawing
on optimization theory, mathematics, neuroscience, psychology, and control
theory. Credit to David Silver’s lecture notes for inspiration.

(1948), imagining a society governed by behavioral engineering—an early
thought experiment on the societal consequences of large-scale algorithmic
reinforcement of human behavior.

Ivan Pavlov’s work on classical conditioning in the 1890s also contributed to
our understanding of how associations form between stimuli and responses.
His famous experiments trained dogs to salivate at the sound of a bell,
demonstrating that neutral stimuli can acquire predictive value through
repeated pairing with rewards.

Neuroscience Neuroscience has provided both inspiration and validation
for RL algorithms. For example, Schultz et al. (1997) demonstrated that
dopamine neurons in primates encode reward prediction errors—the dif-
ference between received and expected rewards. This is precisely the signal
computed by temporal-difference (TD) learning algorithms, providing strik-
ing evidence that the brain implements something remarkably similar to
computational RL.

The brain’s reward pathways influence behavior across many domains and
are implicated in phenomena ranging from addiction to depression. This
connection between computational and biological learning has made RL

6 | PETER HENDERSON

1 |

[t
jF—

g .\ L.
Richard E. Bellman
(1920-1984).

The last remaining neuron of
SNARC.

a deeply interdisciplinary field, with many neuroscientists contributing to
algorithm development and many computer scientists drawing inspiration
from neural circuits.

Optimal Control and Dynamic Programming The mathematical founda-
tions of RL come from control theory. Richard Bellman developed dynamic
programming in the 1950s, providing a systematic approach to solving se-
quential decision problems (Bellman, 1957a,b). His work introduced the
Bellman equation, which expresses the value of a decision problem recur-
sively in terms of immediate rewards and future values. Bellman’s formula-
tion of discrete stochastic control problems gave us the Markov Decision
Process (MDP), which remains the dominant mathematical framework for
RL.

Ron Howard introduced policy iteration in 1960, providing an alternative
algorithm for solving MDPs that alternates between evaluating a policy and
improving it (Howard, 1960). This work established many of the fundamen-
tal concepts we still use today.

Dynamic programming remains a backbone of RL and a key tool in fields
like macroeconomics. The key difference between classical control and RL is
that control theory often assumes continuous time, known dynamics, and
deterministic systems, while RL typically handles discrete time, unknown
dynamics, and stochastic environments.

Trial-and-Errorin Early AI. Early Alresearchers built machines thatlearned
from reinforcement signals. In 1954, Marvin Minsky and colleagues at Prince-
ton built the Stochastic Neural Analog Reinforcement Calculator (SNARC)—
a machine with 40 Hebb synapses that learned to solve a simulated maze,

mimicking the reinforcement learning experiments psychologists conducted

with rats. It is worth a moment of reflection how this machine in some ways

reflects how we train neural networks today at massive scale, despite this

being over 70 years ago!

Arthur Samuel’s checkers program at IBM represented another milestone
(Samuel, 1959). His program learned to play checkers better than Samuel
himself through self-play, introducing key ideas later formalized as temporal-
difference learning. Samuel’s work is notable for coining the term “machine
learning” and demonstrating that computers could improve their perfor-

1.1 The Reinforcement Learning Problem ‘ 7

mance through experience without being explicitly programmed for every
situation.

The 1970s-80s Revival. ~After a relatively quiet period, RL research revived
in the 1970s and 1980s. Harry Klopf developed early temporal-difference
learning ideas between 1972 and 1982. Rich Sutton and Andrew Barto
formalized TD learning, introduced the TD(\) algorithm, and developed
actor-critic methods between 1981 and 1988. Chris Watkins introduced
Q-learning in his 1989 PhD thesis (Watkins, 1989), providing a model-
free, off-policy algorithm whose convergence was later proven rigorously
(Watkins and Dayan, 1992). By the 1990s, these threads had merged into
modern RL as we know it.

The Deep RL Revolution (2013-present). The combination of deep learn-
ing with RL led to dramatic breakthroughs. DeepMind’s Deep Q-Network
(DQN) first appeared on arXiv in 2013 and was published in Nature in 2015
(Mnih etal., 2015). DQN demonstrated that a single algorithm could achieve
human-level performance on dozens of Atari games, learning directly from
raw pixels. This work showed that deep neural networks could serve as pow-
erful function approximators for RL, overcoming the limitations of tabular
methods.

In 2016, AlphaGo defeated world champion Lee Sedol at Go (Silver et al,,
2016)—a game with approximately 10!7 possible positions that had long
been considered a grand challenge for Al In 2017, AlphaGo Zero achieved
even stronger performance at Go using only self-play with no human game
data (Silver etal., 2017). This was followed by AlphaZero (Silver et al., 2018),
which mastered chess, shogi, and Go through the same self-play approach,
demonstrating the power of combining deep learning, Monte Carlo tree
search, and reinforcement learning.

The RL+LLM Era (2020s—present). Most recently, RL has become crucial
for training large language models. The Reinforcement Learning from
Human Feedback (RLHF) paradigm (Christiano et al., 2017; Ouyang et al.,
2022) involves pre-training a language model on text data, collecting human

Rich Sutton and Andrew
Barto.

8 | PETER HENDERSON

ChatGPT

Al Chat

ChatGPT, trained using
RLHF.

Lee Sedol (B) vs AlphaGo (W) - Game 1

Figure 1.2: Left: Atari Breakout, one of the games mastered by DQN. Right:
A game record from AlphaGo vs. Lee Sedol (2016).

preferences to train a reward model, and then fine-tuning with RL algorithms
like PPO (Schulman et al., 2017) to maximize the learned reward. This
paradigm powers ChatGPT, Claude, Llama, and other modern Al assistants.

1.1.3 How is RL Different from Other Approaches?

While many methods can be reformulated to and from the RL paradigm, RL
is typically distinct from other approaches in several important ways.

Compared to supervised learning, RL lacks labeled examples of correct
behavior. In supervised learning, a teacher provides the “right answer” for
each input. In RL, there are no labels for the “right” action—only a scalar
reward signal that may be delayed and sparse. Moreover, the agent’s actions
affect what data it sees next, creating a feedback loop between learning and
data collection that does not exist in standard supervised learning.

Compared to classical control theory, RL typically assumes that the dy-
namics and rewards are unknown. Control theory often works with known
system equations (the “plant model”) and focuses on designing optimal con-
trollers. RL must learn about the environment through interaction, handling
uncertainty about how the world works.

1.1 The Reinforcement Learning Problem ‘ 9

Compared to standard optimization, RL must handle sequential decisions
with delayed consequences. Finding the maximum of a function is funda-
mentally different from finding the best sequence of decisions when each
choice affects future options and rewards may not arrive until much later.

1.1.4 What Makes RL Hard?

Four core challenges make RL fundamentally difficult.

Exploration. How should an agent gather useful experience? To learn
whether an action is good, the agent must try it. But trying unknown ac-
tions might be costly or dangerous, while sticking with known good actions
might mean missing better alternatives. This is the exploration-exploitation
tradeoff: the agent must balance exploiting what it knows (taking actions
that have worked well) against exploring the unknown (trying actions to
learn more about them).

Example 1 (Exploration vs. Exploitation). Consider choosing a restaurant for
dinner. Exploitation means going to your favorite restaurant—using what you
already know. Exploration means trying a new restaurant that might be better (or
worse). Every diner faces this tradeoff, and so does every RL agent.

Delayed Consequences (Credit Assignment). Which past actions led to
the current reward? In chess, a game has thousands of moves but only one
outcome (win/loss/draw). How do we determine which moves were good?
This is the credit assignment problem: determining how much each past
action contributed to the current reward. When rewards are sparse and
delayed, credit assignment becomes extremely challenging.

Sample Efficiency. RL often requires enormous amounts of data. AlphaGo
trained on millions of games of self-play. The original DQN required billions
of frames to master Atari games. OpenAl’s Dactyl robotic hand system
required the equivalent of 13,000 years of simulated experience. Real-world
interaction is expensive, slow, and sometimes dangerous, making sample
efficiency—learning from limited data—one of the central challenges in RL.

10 ‘ PETER HENDERSON

Reward Specification. Specifying the “right” reward is surprisingly diffi-
cult. The agent will optimize exactly what you specify, which may not be
what you meant. A poorly-specified reward leads to unintended behavior—
the agent finds clever ways to maximize reward that violate the spirit of the
task. This phenomenon is called reward hacking or specification gaming
(Krakovna et al., 2020).

Figure 1.3: CoastRunners Reward Hacking. An RL agent trained to maxi-
mize score in a boat racing game discovered it could earn more points by
driving in circles and repeatedly hitting three targets in a lagoon (score
progression: 6500 — 18500 — 30500) than by actually finishing the race
(note: laps completed remains at —/3). The agent catches fire, crashes into
other boats, and goes the wrong direction—but achieves scores 20% higher
than human players who complete the course normally (Clark and Amodei,
2016). Video: https://www.youtube.com/watch?v=t10IHko8ySg

Consider the CoastRunners example shown in Figure 1.3. OpenAl trained
an RL agent to play a boat racing game where the goal—as understood by
humans—is to finish the race quickly. The game awards points through
targets laid out along the route, and the researchers assumed this scoring
system would incentivize race completion. Instead, the agent discovered
an isolated lagoon where it could drive in circles, repeatedly knocking over
three targets as they respawned. Despite catching fire, crashing into other
boats, and going the wrong direction, the agent achieved scores 20% higher
than human players could achieve by actually completing the course (Clark
and Amodei, 2016).

Figure 1.4 shows another example: a simulated humanoid tasked with throw-
ing a baseball to hit a target. When given only the target-hitting objective
without constraints on how to move, the agent learned bizarre, contorted
motions that bear no resemblance to human throwing—but successfully hit
the target. The reward specified what to achieve but not how to achieve it
naturally.

https://www.youtube.com/watch?v=tlOIHko8ySg

1.1 The Reinforcement Learning Problem ‘

11

Humanoid: Baseball Pitch - Throw No Reference Motion No Reference Motion

T B

Throwing a ball to a target. Without a reference motion, the policy Without a reference motion, the policy
ievelop awkward strategies. can develop awkward strategies.

Figure 1.4: Humanoid Baseball Pitch. Left: The intended task—a simulated
humanoid throwing a ball to hit a red target. Center and Right: Without
a reference motion to constrain the solution, the learned policy develops
awkward, non-human strategies that technically achieve the objective but
violate the spirit of the task. Video: https://www.youtube.com/watch?v=
mf9wbpz_tfQ

Perhaps most striking is an example from language models. During testing
of OpenAl’s ol-preview model on a Capture the Flag (CTF) cybersecurity
challenge, the target container failed to start due to a bug. Rather than
reporting failure, the model used nmap to scan the network, discovered a
misconfigured Docker daemon API, and exploited it to start the container
and read the flag—bypassing the intended challenge entirely (OpenAl, 2024).
The model pursued its given goal (retrieve the flag), but when the standard
path was blocked, it “gathered more resources” and found an unexpected
solution that violated the spirit of the evaluation.

This problem becomes especially acute when deploying RL systems in the
real world, where misspecified rewards can lead to harmful behaviors. The
field of Al alignment studies how to ensure that Al systems pursue objectives
that align with human intentions.

1.1.5 The Agent-Environment Interface

At the heart of RL is a feedback loop between an agent and its environment.
The agent is the learner and decision-maker; the environment is everything
outside the agent that it interacts with.

At each discrete time step ¢, the interaction proceeds as follows. The envi-
ronment presents the current state s; (or an observation oy if the state is
only partially observable). The agent selects an action a; according to its
policy 7. The environment then transitions to a new state s;; according to

The ol-preview incident
demonstrates that reward
hacking extends beyond
games to real-world systems.
When the intended solution
path was blocked, the model
found an
alternative—exploiting a
misconfigured Docker
API—that technically
achieved the goal but
bypassed the intended
challenge entirely.

https://www.youtube.com/watch?v=mf9w6pz_tfQ
https://www.youtube.com/watch?v=mf9w6pz_tfQ

12

| PETER HENDERSON

The subscript convention:
r+41 is the reward received
after taking action a.. This
“arrival time” indexing is
standard in Sutton and Barto

(2018).

In RL, both the reward
function r and dynamics 7
are typically unknown to the
agent. The agent must learn

from interaction.

N action a; e -
Agent Environment

m(a| s) < T(s'|s,a)
state s;11, reward 71 -

Y

.

Figure 1.5: The agent—environment interaction loop. At each time step, the
agent observes state s;, selects action a; via policy 7, and the environment
transitions to s;11 while emitting reward r; ;.

its transition dynamics 7 (s¢+1 | S¢, at), and emits a reward ;1. The agent
uses the experience tuple (s, as, 711, S¢+1) to update its policy. This cycle
repeats, potentially forever or until a terminal state is reached.

The key components of this framework are the state s € S, which captures the
current situation and contains all information relevant for decision-making;
the action a € A, which represents what the agent can do; the reward
r(s,a) € R, a scalar feedback signal indicating how good the transition was;
the transition dynamics 7 (s’ | s,a), a probability distribution over next
states; and the policy 7(a | s), the agent’s strategy for selecting actions.

Experience is often organized into episodes (or trajectories): sequences
T = (S0, a0,71, S1, 01,72, . . .) that terminate when a terminal state is reached.
Many RL algorithms collect batches of episodes and use them to update the

policy.

An Alternative View: Rewards Outside the Environment The presenta-
tion above follows Sutton and Barto (2018) in treating reward as a signal
emitted by the environment. However, it can be conceptually useful to think
of the reward function as separate from the environment dynamics (Lu et al,,
2023).

In this view, the environment’s dynamics T (s’ | s, a) govern how states evolve,
while the reward function r(s,a, s") is a separate component that evaluates
transitions. This perspective is particularly useful when reward is not a
natural part of the environment. For example, we might add curiosity
bonuses that reward visiting novel states, or shaping rewards that guide
learning toward desired behaviors.

1.1 The Reinforcement Learning Problem ‘ 13

Reward

r(s,a,s)

Figure 1.6: Reward as a separate function. The dynamics 7 govern state
transitions, while the reward function r(s, a, s’) is computed separately based
on the transition.

The Objective The agent’s goal is to find a policy that maximizes expected

cumulative reward:
T
E 7(5t, at)]
t=0

For problems that might continue indefinitely, we introduce discounting to
ensure the sum remains finite:

max E. [Z (st at)]

t=0

max E,
™

where v € [0, 1) is the discount factor. The discount factor determines how
much the agent values immediate rewards versus future rewards.

As David Silver has noted, “All goals can be described by the maximisation
of expected cumulative reward” (Silver, 2015). Whether this reward hypoth-
esis is literally true remains debated, but it provides a powerful and flexible
framework for formulating sequential decision problems. Silver et al. (2021)
argue more provocatively that “reward is enough”—that intelligence and all
its associated abilities can be understood as subserving the maximization of
reward, and that sufficiently powerful reinforcement learning agents could
constitute a path to artificial general intelligence.

Consider some examples of reward signals. In helicopter control, the agent
might receive positive reward for maintaining a desired trajectory and nega-
tive reward for crashing. In chess, a simple reward structure gives +1 for
winning, —1 for losing, and 0 otherwise. For robot locomotion, rewards
might include positive values for forward progress and penalties for falling.
In portfolio management, the reward might simply be the profit or return at
each time step.

14 | PETER HENDERSON

1.2 Markov Decision Processes

The Markov Decision Process (MDP) provides the mathematical founda-
tion for sequential decision-making under uncertainty. First formalized by
Bellman (1957b), the MDP framework has become the standard language
for describing RL problems.

Definition 1 (Markov Decision Process). An MDP is a tuple (S, A, 7, R,7)
where S is a finite set of states, A is a finite set of actions, 7 : S x A x S —
[0,1] is the transition function with 7 (s’ | s,a) giving the probability of
transitioning to state s’ when taking action a in state s, R : S x A — R s the
reward function, and v € [0, 1) is the discount factor.

1.2.1 The Markov Property

The defining characteristic of an MDP is the Markov property: the future
depends only on the present state, not on the history of how we got there.

Definition 2 (Markov Property). A state s; is Markov if and only if:

Pr(sit1 | st ae, Si—1,a1—1, - .-, 50,00) = Pr(si1 | s¢,a¢)

The current state contains all information relevant for predicting the future;
the history provides no additional predictive power. In chess, for example,
the current board position is Markov—knowing how we reached this po-
sition doesn’t help predict future positions. In contrast, the current hand
in blackjack is not Markov by itself, since cards already played affect what
cards remain in the deck. However, we can augment the state to include
information about played cards, making it Markov.

When the Markov property holds, we say the state provides a sufficient
statistic for the history. This property is what makes dynamic programming
possible: we can solve for optimal behavior state by state, without tracking
the entire history.

1.2 Markov Decision Processes

15

1.2.2 Return: Cumulative Discounted Reward

The return G, is the cumulative discounted reward from time ¢ onward:

o0

G =rep1+ 2+ s+ = Y e
k=0

The return is a random variable whose value depends on the policy =, the
transition dynamics 7, and the rewards R. Note the recursive structure:

Gt =11 +7Ge

This recursive relationship is fundamental to RL algorithms, allowing us
to express the value of being in a state in terms of immediate rewards and
future values.

1.2.3 The Discount Factor

How much weight should we put on rewards at different time steps? The
discount factor v controls this tradeoff between immediate and future re-
wards. A useful rule of thumb is that v corresponds to reasoning about
approximately ﬁ steps into the future:

Discount v Effective Horizon

1

0.5 =05 = 2 steps
0.9 =09 = 10 steps
0.99 =095 — 100 steps

0.999 595 = 1000 steps

There are several reasons to use a discount factor less than 1. First, dis-
counting provides mathematical convenience by ensuring the infinite sum
>i2 oY converges to a finite value, which is necessary for the mathematics
of infinite-horizon problems to work out cleanly.

Second, discounting models uncertainty about the future. The further
we look ahead, the less confident we should be in our predictions. The

This rule of thumb comes
from the expected value of a
geometric distribution with
parameter ~, which governs
how far into the future the
agent effectively “looks.”

16

PETER HENDERSON

/ v = 0.99

0.75 +

05 +

0.25

‘ ‘ ‘ ‘ ‘ —> {
1 2 3 4 5 6

Figure 1.7: The discount factor v controls how quickly rewards are dis-
counted over time. With v = 0.5, rewards decay rapidly and the agent is
myopic. With v = 0.99, rewards decay slowly and the agent plans far into
the future.

environment might change, the episode might terminate unexpectedly, or
our model of the world might become increasingly inaccurate.

Third, discounting captures a preference for sooner rewards, analogous to
the economic concept of time preference. A dollar today is worth more than
a dollar tomorrow, both because of opportunity cost (the dollar today can
be invested) and because the future is uncertain.

Interestingly, psychological research has found that humans exhibit hyper-
bolic discounting rather than the exponential discounting (7') used in
standard RL (Ainslie, 1975; Laibson, 1997). Humans often prefer $100 to-
day over $110 tomorrow, but prefer $110 in 31 days over $100 in 30 days.
This leads to time inconsistency—optimal decisions appear to change just
because time has passed. RL uses exponential discounting precisely because
it guarantees time consistency: the optimal policy is the same whether we're
planning today or tomorrow.

1.2.4 Value Functions

A policy 7 : S — A specifies how the agent behaves. For stochastic policies,
we write 7(a | s) for the probability of taking action a in state s. Our goal is
to find an optimal policy 7* that maximizes expected cumulative reward.

1.2 Markov Decision Processes

17

weight

Exponential

~t
!

> 1

Figure 1.8: Exponential vs. hyperbolic discounting. Hyperbolic discounting
(observed in humans) discounts the near-term more steeply but flattens out
for distant rewards, leading to time-inconsistent preferences. Exponential
discounting maintains a constant rate and guarantees time consistency.

Definition 3 (State-Value Function). The state-value function V" (s) for a
policy 7 is the expected return starting from state s and following :

V(s) =Ex[Gi | st = s] = Er [Z Vorepran | s = S]
k=0

This function answers: “How good is it to be in state s when following policy
7_[_?//

Definition 4 (Action-Value Function). The action-value function Q™ (s, a) is

the expected return starting from state s, taking action a, and then following
U

Q" (s,a) =Er [Gy | 8¢ = 5,0 = a

This function answers: “How good is it to take action a in state s?”

These two value functions are related by:

VT(s) = Y n(a])Q(s.0)

a

For a deterministic policy, this simplifies to V7 (s) = Q™ (s, 7(s)).

18 ‘ PETER HENDERSON

1.2.5 Optimal Value Functions
The optimal value functions represent the best possible performance achiev-
able by any policy:

V*(s) = max V7 (s), Q*(s,a) = max Q" (s,a)

™

A crucial result is that given Q*, the optimal policy has a simple form:

7 (s) = argmax Q*(s, a)
acA

This is why finding Q* or V* is the core goal of many RL algorithms—once
we have the optimal value function, the optimal policy follows immediately.

1.2.6 The Bellman Equations

Value functions satisfy a fundamental recursive relationship called the Bell-
man equation, named after Richard Bellman (Bellman, 1957a). The core
idea is:

Value now = Immediate reward + Discounted future value

Theorem 1 (Bellman Expectation Equation). For any policy , the value func-
tion satisfies:

VT(s)=> m(als)|R(s,a) + Y _T(s | 5,a)V7(s)

a

This equation expresses V™ (s) as the expected immediate reward plus the
discounted expected value of the next state, where the expectations are
taken over the policy’s action distribution and the environment’s transition
probabilities.

Theorem 2 (Bellman Optimality Equation). The optimal value function satisfies:

V*(s) = max R(s,a) +7£T(s’ | s,a)V*(s")

1.2 Markov Decision Processes \

19

The Bellman optimality equation characterizes V* as a fixed point: if we
apply the right-hand side to V*, we get V* back. Finding this fixed point
gives us the optimal value function, from which we can extract the optimal

policy.

1.2.7 Categorizing RL Agents

RL agents can be categorized along several dimensions. Value-based meth-
ods learn a value function and derive the policy from it; examples include
Q-learning and DQN (Mnih et al., 2015). Policy-based methods learn the
policy directly without explicitly representing the value function; examples
include REINFORCE (Williams, 1992) and PPO (Schulman et al., 2017).
Actor-critic methods learn both a value function (the critic) and a policy
(the actor), using the value function to reduce variance in policy updates.

Another important distinction is between model-free and model-based
approaches. Model-free methods learn directly from experience without
building an explicit model of the environment’s dynamics. Model-based
methods learn a model of the transition function and reward function, then
use planning algorithms to derive a policy.

Finally, the nature of the state and action spaces matters greatly for algo-
rithm design. Tabular methods represent value functions as tables with one
entry per state (or state-action pair), giving exact solutions but requiring
small, discrete state spaces. Function approximation methods use param-
eterized functions (often neural networks) to represent values or policies,
enabling generalization across states but introducing approximation error
and potential instability.

1.2.8 Example: Grid World MDP

To make these concepts concrete, consider a grid world environment—a
classic testbed for RL algorithms.

Example 2 (Grid World MDP). Consider a 4 x 4 grid world where the state
space S = {(z,y) : x,y € {0,1,2,3}} consists of 16 grid positions. The action
space A = {1,], <, —} contains four movement directions. Position (3,3) is a

The Bellman optimality
equation is a system of |S]|
nonlinear equations due to
the max operator. We cannot
solve it directly via matrix
inversion, which motivates
iterative methods like value
iteration.

20 ‘ PETER HENDERSON

goal state with reward +10, while positions (1,2) and (2, 1) are hazard states
with reward —5. The discount factor is v = 0.9.

3 +10
2 —5
1 =5 T 80%
0 S <t Agent1+—
10%)] 10%
0 1 2 3 Intended: 1

Figure 1.9: Left: The 4 x 4 grid world MDP. The agent starts at S, aims for
the goal (+10), and must avoid hazards (—5). Right: Stochastic “slippery”
dynamics—the agent moves in the intended direction with 80% probability,
but slips perpendicular with 10% probability each.

The dynamics are stochastic to model real-world uncertainty. With 80%
probability, the agent moves in the intended direction. With 10% probability
each, the agent slips to one of the perpendicular directions. Hitting a wall
means staying in place.

For example, if the agent takes action 1 in state s:

T(Sabove ‘ S,T) =0.8
T(Sleft ‘ SvT) =0.1
T(sugpe | 5,1) = 0.1

This stochastic dynamics makes the problem interesting: the agent cannot
simply plan a shortest path, but must account for the risk of accidentally
slipping into hazard states.

How many deterministic policies exist for this small MDP? Each of the 16
states needs an action assignment, with 4 choices per state, giving | A|IS| =
416 — 4.994,967,296 deterministic policies—over 4 billion! Even for this tiny
MDP, brute-force enumeration is impossible. We need efficient algorithms.

1.3 Value Iteration

21

1.3 Value Iteration

Given an MDP (S, A, T, R, v) with known dynamics, how do we compute
the optimal policy 7*? Value iteration is a dynamic programming algorithm
that computes the optimal value function by iteratively applying the Bellman
optimality operator (Bellman, 1957a).

Think of Vj(s) as the optimal value if the agent has exactly k steps remaining
to act. With no steps remaining, there is no opportunity to collect future
reward, so V(s) = 0 for non-terminal states (terminal states retain their fixed
values). For general k, the optimal k-step value uses optimal (k—1)-step
values:

Vie(s) = max R(s,a) + va(s’ | 5,a)Vi_1(s")

s

As k — o0, this converges to the true optimal value function V*.

1.3.1 The Bellman Optimality Operator

Definition 5 (Bellman Optimality Operator). The Bellman optimality oper-
ator B : RISl — RISI is defined as:

(BV)(s) = max

acA

R(s,a) +7 Y _ T(s' | s,a)V(s)

s'eS

Value iteration simply applies this operator repeatedly: Vj,;1 = BV},. Simi-
larly, for a fixed policy 7, we can define the Bellman policy operator 5":

(BV)(s) =) m(a|s)

a

R(s,a) +v > _T(s' | s,a)V(s)

L)

22

| PETER HENDERSON

In this simplified formulation,
terminal state values are fixed
and reward comes only from
reaching terminal states. This
is pedagogically convenient
but differs slightly from the
general Bellman formulation
where R(s, a) appears
explicitly.

1.3.2 The Algorithm

Algorithm Value Iteration

1. Initialize: Vp(s) =0 foralls € S

2. Iterate: For k£ = 0,1, 2, ... until convergence:

R(s,a)+v Y _T(s | s,a)Vi(s)| VseS

‘/l S) = max
1() acA ;
s'eS

3. Stopping criterion: ||Vj1 — Vi||eo < € for some threshold € > 0

4. Extract policy:

7 (s) = arg max

5 R(s,a) +7)_T(s | 5,a)V*(s)

s/

1.3.3 A Worked Example

Let’s trace through value iteration on our grid world. We treat terminal states
(goal and hazards) as absorbing states with fixed values: V' (goal) = 10 and
V(hazard) = —5. All non-terminal states are initialized to V;(s) = 0.

Consider state (2, 3), which is adjacent to the goal. The best action is —
(moving right toward the goal). Applying the Bellman backup:

Vi(2,3) = maxy Y [T(s' | (2,3),a) - Va(s')

=09x (08-10+0.1-0+ 0.1-0
N—— = =
reach goal slipup slip down

=09x8="T72

State (1, 1) is adjacent to both hazards. Its best action (moving away from
hazards) still risks slipping into one:

Vi(1,1) = 0.9 x (0.8-0+0.1-0+0.1-(=5)) = 0.9 x (—0.5) = —0.45 ~ —0.5

1.3 Value Iteration

23

k=0 k=1 v
0 (0] (0] 10 0 0 7.2 10 5.3 | 6.3 | 8.6 10
0 -05 0 0 : (0] —5 b5l 7.2 i 3.7 —-51]6.5]| 8.6
0 0 -5 0 0 —.5 =85 0 3.2 2.1F-5]6.3
0 0 0 0 0 0 0 0 28| 3.2|3.7|5.3

Figure 1.10: Value iteration progression on the grid world. Left (k = 0): Ini-
tial values are zero for non-terminal states; terminal states have fixed values.
Center (k = 1): After one iteration, states adjacent to the goal receive positive
values (highlighted); states near hazards receive negative values. Right (V*):
Converged values after ~16 iterations, with color intensity indicating value
magnitude. Values “flow” outward from the goal.

After convergence (approximately 16 iterations for v = 0.9), the value func-
tion shows how “value flows” from the goal outward. States closer to the
goal with safer paths have higher values. State (1, 1) has lower value than its
neighbors because it is adjacent to both hazards. The optimal policy follows
the value gradient toward the goal while avoiding hazards.

sl = | = | = | +w0
IS B
SRS
o |t || 1

Figure 1.11: The optimal policy for the grid world MDP after value iteration
converges. Arrows indicate the best action in each state. The policy routes
the agent toward the goal while avoiding states adjacent to hazards where
possible. Note how state (1, 1) moves left to avoid the hazard at (2, 1), even
though moving right would be shorter.

24 | PETER HENDERSON

1.3.4 Convergence Analysis

Why does value iteration converge? The answer lies in the contraction
mapping theorem.

Theorem 3 (Bellman Operator is a Contraction). For discount factor v € [0, 1)
and all V, V' € RISI:

1BV = BV loo <AIIV = V'[lo0
Proof. Forall s € S:

(BV)(s) — (BY')(s) = max

R(s,a) + ’yZT(s’ | s,a)V(s)

S

— Imax
a

R(s,a)+ ’}/ZT(S, | s,a)V'(s")

S

Using the fact that max, f(a) — max, g(a) < max,[f(a) — g(a)]:

< max [va’ [5:0) (V) = V'(s)

S

< »ymngfr(s' | s,0)|[|[V = V'||os

=V =Vl

The last step uses), 7 (s’ | s,a) = 1. Taking the max over s gives the
result. O

Theorem 4 (Convergence of Value Iteration). For v € [0,1), the sequence
Vo, Vi, ... with Vi1 = BV}, converges to V*.
Proof. The optimal value function V* is the unique fixed point of 5, satisfying
V* = BV*. For each k:

V" = Visalloo = IBV" = BVilloo < 7[IV" = Villoo
By induction:

IV* = Villoo < ’kaV* —Wlloo = 0as k — oo

1.3 Value Iteration \ 25

Implications for Frontiers

When developing new RL algorithms, contraction mappings provide
a powerful tool for building intuition and proving convergence. If
you can show your update operator “shrinks” the distance between
any two value functions (or policies), convergence to a unique fixed
point is guaranteed.

This principle extends beyond value iteration. Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017) rely on constraints that
limit how much the policy can change in each update—encouraging
stable, monotonic improvement. While not strictly contraction map-
pings in the classical sense, these methods embody the same intuition:
by controlling the “step size” of updates, we can guarantee that each
iteration brings us closer to (or at least no further from) the optimal
solution.

When designing your own algorithms, ask: Can I bound how much my
update changes the current solution? Does my update operator have a unique
fixed point? Affirmative answers often lead to provable convergence
guarantees.

\

Value iteration converges under two conditions: either v < 1, or all policies

eventually reach a terminal state.

1.3.5 Asynchronous Value Iteration

A remarkable property of value iteration is that it converges even when states
are updated asynchronously—different states can be updated at different

times, even using outdated values.

Theorem 5 (Asynchronous Convergence). Fix a finite MDP (S, A, T, R) and
v € 10,1). If So, S1, . .. is a sequence of state subsets such that each state s € S

appears infinitely often, then the sequence generated by

(BVk)(S) s E S,

Vi) = {ms) 5 ¢ 5

converges to V* for any initialization V;.

The convergence rate is
geometric: the error
decreases by a factor of ¢
each iteration. In our worked
example, for v = 0.9,
approximately 44 iterations
reduce the error by a factor of
100.

26 ‘ PETER HENDERSON

Proof sketch. Since B is a vy-contraction, for any updated state s € Sy:
[V(5) = Viera (s)] = [(BVF)(s) = (BVi)(s)| < A[V" = Vielloo

Because each state appears infinitely often, the error eventually contracts for
all states, and the sequence converges to V'*. O

This theorem has important practical implications. Gauss-Seidel value iter-
ation updates states in sequence, using newly computed values immediately.
When computing V (s;), it uses already-updated values V(s1), ..., V(si—1).
This often converges faster because information propagates within a single
sweep.

Parallel value iteration allows different processors to update different states
simultaneously, enabling efficient distributed implementations. This is espe-
cially important for modern RL with large language models, where compu-
tational throughput is paramount.

Prioritized sweeping focuses updates on states with large Bellman errors,
potentially achieving faster convergence by updating the most “out-of-date”
states first.

Implications for Frontiers

It’s worth noting the importance of asynchronous updates. Just like
in value iteration, asynchronous updates have shown great success in
modern deep RL. More recently, PipelineRL (Piché et al., 2025) takes
asynchronicity further by overlapping different stages of the learn-
ing pipeline—data collection, gradient computation, and parameter
updates can proceed simultaneously on different hardware. This has
been validated as a key way to improve convergence speed (at least
in wall clock time) in large-scale recipe experiments by Khatri et al.
(2025). But these weren't the first to try and make async RL work
well in deep RL. Methods like IMPALA (Espeholt et al., 2018), Ape-X
(Horgan et al,, 2018), and Asynchronous Advantage Actor-Critic
(A3C/A2C) (Mnih et al., 2016) use this approach to achieve orders-
of-magnitude (wall clock) speedups over synchronous training at the
cost of some stability issues and engineering challenges.

1.3 Value Iteration | 27

1.3.6 Implementation

Here is a Python implementation of value iteration:

Listing 1.1: Value Iteration Implementation
import numpy as np

class Valuelteration:
"hhStandard Value Iteration algorithm for MDPs. """

def __init__(self, mdp):
self .mdp = mdp

def run(self, theta=0.001, gamma=0.9):
"""Run wvalue tteration until convergence.
V = np.zeros(self.mdp.S)

nann

while True:
delta = 0
V_old V.copy ()

for s in range(self.mdp.S):

g_values = []
for a in range(self.mdp.A):
q = self.mdp.R[s, al + gamma * sum(

self .mdp.T[s, a, spl] * V_oldl[sp]
for sp in range(self.mdp.S))
g_values.append(q)

V[s] = max(q_values)
delta = max(delta, abs(V_old[s] - VI[s]))

if delta < theta:
break

pi = self.get_policy(V, gamma)
return pi, V

def get_policy(self, V, gamma=0.9):
"""Extract greedy policy from walue function."""

pi = {}
for s in range(self.mdp.S):
g_values = [

self .mdp.R[s, al] + gamma * sum(

28 | PETER HENDERSON

self .mdp.T[s, a, spl * V[spl
for sp in range(self.mdp.S))
for a in range(self.mdp.A)]
pils] = np.argmax(q_values)
return pi

The standard implementation above uses synchronous (or Jacobi-style)
updates: all states are updated using the values from the previous iteration.
An alternative is Gauss-Seidel updates, where we use newly computed
values immediately within the same sweep.

Listing 1.2: Gauss-Seidel Value Iteration

import numpy as np

class GaussSeidelValuelteration:

"""Gauss -Setrdel VI: use updated walues immediately.

def init__(self, mdp):

self .mdp = mdp

def run(self, theta=0.001, gamma=0.9):
V = np.zeros(self.mdp.S)

while True:
delta = 0
Key difference: NO copy - wuse V directly
for s in range(self.mdp.S):
v_old = V[s]
g_values = []
for a in range(self.mdp.A):
Uses already-updated V[s’] for s’ <
s
q = self.mdp.R[s, al + gamma * sum(
self .mdp.T[s, a, spl * V[sp]
for sp in range(self.mdp.S))
g_values.append(q)
V[Is] = max(q_values)
delta = max(delta, abs(v_old - V[s]))

if delta < theta:
break
return V

1.3 Value Iteration \ 29

Gauss-Seidel updates often converge faster because information propagates
within a single sweep rather than waiting for the next iteration. However,
the update order can affect convergence speed.

A more sophisticated variant handles self-loops explicitly. When a state
can transition back to itself, the standard update mixes old and new val-
ues. The Jacobi update with self-loop correction solves for the fixed point
analytically:

Listing 1.3: Jacobi Value Iteration with Self-Loop Handling
import numpy as np

class JacobiValuelteration:
""" Jjacobi VI with explicit self-loop handling. """

def __init__(self, mdp):
self .mdp = mdp

def run(self, theta=0.001, gamma=0.9):
V = np.zeros(self.mdp.S)

while True:
delta = 0
V_old V.copy O)

for s in range(self.mdp.S):
v = V_old[s]
q_values = []
for a in range(self.mdp.A):
Separate self-loop from other
transitions
sum_others = sum(
self .mdp.T[s, a, spl] * V_old[sp]
for sp in range(self.mdp.S) if sp
1= g)
Solve: V(s) = R + gamma*(T[s,a,s]*V
(s) + sum_others)
=> V(s)*(1 - gamma*T[s,a,s]) = R +
gamma*sum_others
denom = 1.0 - gamma * self.mdp.T[s, a
,» sl
if denom > O:
q = (self.mdp.R[s, al + gamma *
sum_others) / denom

30 | PETER HENDERSON

else:
q = self.mdp.R[s, al] + gamma *
sum_others
g_values.append(q)
V[s] = max(qg_values)
delta = max(delta, abs(v - V[sl))

if delta < theta:
break
return V

For large MDPs, prioritized sweeping can dramatically improve convergence
by focusing computation on states with large Bellman errors:

Listing 1.4: Prioritized Sweeping Value Iteration

import numpy as np
import heapq

class PrioritizedSweepingVI:
"M YI with prioritized state updates. """

self .mdp = mdp
Butld predecessor graph for efficient wupdates
self .predecessors = {s: set() for s in range (mdp.

S)}
for s in range(mdp.S):

for a in range(mdp.A):

for sp in range(mdp.S):
if mdp.T[s, a, spl] > O:
self .predecessors[sp].add(s)

def init__(self, mdp):

def run(self, theta=0.0001, gamma=0.9, max_iter=2000)

V = np.zeros(self.mdp.S)

Priority queue: (-priority, state)
pq = [I

in_queue = set ()

Inttialize with Bellman errors
for s in range(self.mdp.S):
error = self._bellman_error(s, V, gamma)
if error > theta:
heapq.heappush(pq, (-error, s))

1.4 Policy Iteration | 31

in_queue.add(s)

for _ in range(max_iter):
if not pq:
break
_, s = heapq.heappop(pq)
in_queue.discard(s)

Update V/[s]
V[s] = self._bellman_update(s, V, gamma)

Add predecessors with large errors to queue
for p in self.predecessors[s]:
error = self._bellman_error(p, V, gamma)
if error > theta and p not in in_queue:
heapq.heappush(pq, (-error, p))
in_queue.add (p)
return V

def _bellman_update(self, s, V, gamma):
return max(self.mdp.R[s, al] + gamma * sum(
self .mdp.T[s, a, spl] * V[sp] for sp in range(
self .mdp.S))
for a in range(self.mdp.4A))

def _bellman_error(self, s, V, gamma):
return abs(V[s] - self._bellman_update(s, V,
gamma))

Prioritized sweeping is particularly effective when value changes are localized—
updating one state primarily affects its neighbors. By maintaining a priority
queue ordered by Bellman error magnitude, we focus computation where it
matters most.

1.4 Policy Iteration

Policy iteration, introduced by Howard (1960), is an alternative dynamic
programming algorithm that alternates between two steps: policy eval-
uation (computing V™ for the current policy) and policy improvement
(finding a better policy using the current value function).

32 ‘ PETER HENDERSON

1.4.1 Overview

Policy iteration proceeds as follows. First, initialize with an arbitrary policy
mo. Then, in the policy evaluation step, compute V™ for the current policy.
Next, in the policy improvement step, compute a better policy 7; 1 by acting
greedily with respect to V™. Repeat until the policy stops changing.

1.4.2 Policy Evaluation

The policy evaluation step requires computing V" (s) for all states. For a
fixed policy 7, the Bellman expectation equation becomes:

V(s) = R(s,m(s)) +v Y T(s' | s,m(s)V(s)

S

This is a system of |S| linear equations (no max operator), which can be
solved in two ways.

The iterative method applies the Bellman policy operator repeatedly:
Vilpy = RT+4T7V(T
This converges because the policy operator B™ is also a y-contraction.

The direct method solves the linear system exactly. In matrix form, V7™ =
R™ +~T7™V7™, which gives:

VT = ([. ,YTﬂ)flRﬂ

This is exact but requires O(|S|3) time for the matrix inversion.

1.4.3 Policy Improvement

Given V7™, we construct a new policy that is greedy with respect to the
current value function. First, compute Q™ (s, a) for all states and actions:

Q" (s,a) = R(s,a) +7) _T(s' | s,a)V7(s)

L)

1.4 Policy Iteration | 33

Then, define the improved policy:

mir1(s) = argmax Q" (s,a) Vs €S

The intuition is straightforward: if taking action a and then following ;
yields higher value than just following m; from the start, we should take
action a.

1.4.4 Convergence

Theorem 6 (Policy Improvement Theorem). Let 7 be a policy and =’ be the
greedy policy with respect to V™. Then V™ (s) > V™ (s) forall s € S, with equality
if and only if m is already optimal.

Proof. For any state s:
VW(S) < mc?‘XQﬂ—(‘g?a) = Qﬂ—(sa WI(S))
=R(s,7'(s)) + 7Y _T(s | 5,7 (s)V"(s)

S

< R(s,7'(s)) + '727-(3' | s,7'(s)) max Q™ (s',d")

= R(s,m'(s)) +7)_T(s'| 5,7'(s))Q7(s', 7' (s))

)

Continuing this expansion:

V7(s) < Ep = V™ (s)

oo

t
g Yrig1 | So =8
t=0

O

Theorem 7 (Convergence of Policy Iteration). Policy iteration converges to the
optimal policy 7 in a finite number of iterations.

Proof. By the policy improvement theorem, each iteration produces a policy
that is at least as good as the previous one. Since there are only finitely many
deterministic policies (].A|'S!), and each improvement is strict unless we've
reached optimality, the algorithm must terminate at 7*. O

In practice, policy iteration
often converges in far fewer
iterations than value
iteration—sometimes just 2-3
iterations for small
MDPs—because each
iteration makes “larger”
improvements by fully
evaluating the current policy.

34 ‘ PETER HENDERSON

1.4.5 Implementation

Listing 1.5: Policy Iteration Implementation
import numpy as np

def policy_iteration(mdp, gamma=0.9, epsilon=0.01):
" Standard Policy Iteration algorithm. """
V = np.zeros (mdp.S)
policy = [0] * mdp.S

while True:
Policy Evaluation
while True:
delta = 0.0
for s in range(mdp.S):

v = V[s]
a = policyl[s]
V[s] = mdp.R[s, al] + gamma * sum(

mdp.T[s, a, spl * V[sp] for sp in
range (mdp.S))
delta = max(delta, abs(v - VI[sl))
if delta < epsilon:
break

Policy Improvement
policy_stable = True
for s in range(mdp.S):
old_action = policyl[s]
g_values = [
mdp.R[s, al + gamma * sum(
mdp.T[s, a, spl * V[sp] for sp in
range (mdp.S))
for a in range(mdp.A)]
policy[s] = np.argmax(q_values)
if old_action != policyl[s]:
policy_stable = False

if policy_stable:
return V, policy

1.4 Policy Iteration

35

1.4.6 Value Iteration vs. Policy Iteration

Both algorithms find the optimal policy, but they have different trade-offs.
Value iteration has cost O(|S|?|.A|) per iteration and requires many itera-
tions (geometric convergence), but uses only O(|S|) memory and is easy
to parallelize with asynchronous updates. Policy iteration has cost O(|S|3)
per iteration for exact evaluation (or O(|S|?|.A|) for iterative evaluation) but
requires few iterations (finite, often 2-10). It uses O(|S|?) memory for exact
evaluation and is harder to parallelize.

Strong Polynomiality. A deeper theoretical distinction concerns strong
polynomiality—whether an algorithm can find an exactly optimal policy
with computation polynomial in |S], | A|, and 1/(1 —), without dependence
on a precision parameter §. Ye (2011) proved that policy iteration is strongly
polynomial, computing an optimal policy with O(poly(|S|, |A|,1/(1 —7)))
arithmetic operations. Scherrer (2016) later provided a simpler proof show-
ing that policy iteration terminates after at most O(|S||.A|/(1 — 7)) iterations.

In contrast, Feinberg et al. (2014) showed that value iteration is not strongly
polynomial: there exist MDPs with just three states and two actions where
value iteration requires arbitrarily many iterations to find the optimal policy
exactly. The intuition is that value iteration can “hug” a suboptimal action
indefinitely as values approach their limits asymptotically. Policy iteration
avoids this by making discrete jumps between policies, allowing it to “snap”
into the optimal solution.

Practical Implications. Does this theoretical gap matter in practice? Often
not. Value iteration achieves §-suboptimal policies with cost growing only
as log(1/6), which is quite mild. Moreover, in real applications we face
sampling noise, function approximation error, and model mismatch—all of
which make exact optimality unattainable anyway. As Szepesvari (2024)
notes, “exact optimality is nice to have, but approximate computations with
runtime growing mildly with the required precision should be almost equally
acceptable.”

In practice, modified policy iteration offers a middle ground: perform only
a few iterations of policy evaluation (rather than running to convergence)
before each policy improvement step. This combines the fast convergence of

The following discussion is
paraphrased from the RL
Theory lecture notes by
Csaba Szepesvéri
(Szepesviri, 2024), which
provide an excellent
treatment of these complexity
results. Available at https:
//rltheory.github.io/.

https://rltheory.github.io/
https://rltheory.github.io/

36 ‘ PETER HENDERSON

policy iteration with the computational efficiency of value iteration.

Bibliography

George Ainslie. Specious reward: A behavioral theory of impulsiveness
and impulse control. Psychological Bulletin, 82(4):463—496, 1975. doi:
10.1037 /h0076860.

Richard Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957a.

Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679-684, 1957b. doi: 10.1512/iumj.1957.6.56038.

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences.
Advances in Neural Information Processing Systems, 30, 2017.

Jack Clark and Dario Amodei. Faulty reward functions in the wild.
OpenAl Blog, December 2016. URL https://openai.com/index/

faulty-reward-functions/.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable distributed deep-
RL with importance weighted actor-learner architectures. In International
Conference on Machine Learning (ICML), pages 1407-1416, 2018.

Eugene A. Feinberg, Jefferson Huang, and Bruno Scherrer. Modified policy
iteration algorithms are not strongly polynomial for discounted dynamic
programming. Operations Research Letters, 42(6-7):429-431, 2014.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hes-
sel, Hado van Hasselt, and David Silver. Distributed prioritized experience
replay. In International Conference on Learning Representations (ICLR), 2018.

https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/

38 ‘ PETER HENDERSON

Ronald A. Howard. Dynamic Programming and Markov Processes. The Tech-
nology Press of MIT and John Wiley & Sons, New York, 1960.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelligence Research, 4:
237-285,1996. doi: 10.1613/jair.301.

Devvrit Khatri, Lovish Madaan, Rishabh Tiwari, Rachit Bansal, Sai Surya
Duvvuri, Manzil Zaheer, Inderjit S. Dhillon, David Brandfonbrener, and
Rishabh Agarwal. The art of scaling reinforcement learning compute for
LLMs. arXiv preprint arXiv:2510.13786, 2025.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew
Rahtz, Tom Everitt, Ramana Kumar, Zac Kenton, Jan Leike, and
Shane Legg. Specification gaming: The flip side of Al ingenu-
ity. DeepMind Blog, 2020. URL https://deepmind.com/blog/
specification-gaming-the-flip-side-of-ai-ingenuity.

David Laibson. Golden eggs and hyperbolic discounting. The Quarterly
Journal of Economics, 112(2):443-477, 1997.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi,
Ian Osband, and Zheng Wen. Reinforcement learning, bit by bit. Foun-
dations and Trends in Machine Learning, 16(6):733-865, 2023. doi: 10.1561/
2200000097.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015. doi: 10.1038/
naturel4236.

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning (ICML), pages 1928-1937, 2016.

OpenAl OpenAl ol system card. Technical report, OpenAl, December 2024.
URL https://cdn.openai.com/ol-system-card-20241205.pdf.

https://deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://cdn.openai.com/o1-system-card-20241205.pdf

BIBLIOGRAPHY | 39

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie
Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Alexandre Piché, Ehsan Kamalloo, Rafael Pardinas, Xiaoyin Chen, and
Dzmitry Bahdanau. PipelineRL: Faster on-policy reinforcement learn-
ing for long sequence generation. arXiv preprint arXiv:2509.19128, 2025.

Arthur L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210-229, 1959. doi:
10.1147/rd.33.0210.

Bruno Scherrer. Improved and generalized upper bounds on the complexity
of policy iteration. Mathematics of Operations Research, 41(3):758-774, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning (ICML), pages 1889-1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347,2017.

Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of
prediction and reward. Science, 275(5306):1593-1599, 1997. doi: 10.1126/
science.275.5306.1593.

David Silver. Lectures on reinforcement learning. University College London,
2015. URL https://www.davidsilver.uk/teaching/.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-
ing the game of Go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016. doi: 10.1038 /naturel6961.

https://www.davidsilver.uk/teaching/

40 ‘ PETER HENDERSON

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of Go without human knowledge. Nature, 550(7676):354-359, 2017.
doi: 10.1038/nature24270.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018. doi:
10.1126/science.aar6404.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward
is enough. Artificial Intelligence, 299:103535, 2021. doi: 10.1016/j.artint.
2021.103535.

B. F. Skinner. The Behavior of Organisms: An Experimental Analysis. Appleton-
Century, New York, 1938.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, second edition, 2018. ISBN 0262039249.

Csaba Szepesvéri. Theoretical foundations of reinforcement learning: Lec-
ture notes. University of Alberta, CMPUT 653, 2024. URL https:
//rltheory.github.io/.

Edward L. Thorndike. Animal Intelligence: Experimental Studies. Macmillan,
New York, 1911.

Benjamin Van Roy. Foundations for reinforcement learning. Lecture
Notes, MS&E 338: Aligning Superintelligence, Stanford University, 2024.
URL https://web.stanford.edu/class/msande338/notes/mse338_00_
foundations_rl.pdf.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3—4):279-292, 1992. doi: 10.1007/BF00992698.

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, 1989.

https://rltheory.github.io/
https://rltheory.github.io/
https://web.stanford.edu/class/msande338/notes/mse338_00_foundations_rl.pdf
https://web.stanford.edu/class/msande338/notes/mse338_00_foundations_rl.pdf

BIBLIOGRAPHY | 41

Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3—4):229-256,
1992. doi: 10.1007 /BF00992696.

Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial
for the Markov decision problem with a fixed discount rate. Mathematics
of Operations Research, 36(4):593-603, 2011.

	Preface
	Notation
	Introduction to Reinforcement Learning
	The Reinforcement Learning Problem
	Markov Decision Processes
	Value Iteration
	Policy Iteration

